云数据库POLARDB优势解读系列文章之②——高性价比

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 现在做任何事情都要看投入产出比,对应到数据库上其实就是性价比。POLARDB作为一款阿里自研数据库,经常被问的问题是:性能怎么样?能不能支撑我的业务?价格贵不贵?很显然,在早期调研阶段,对稳定性、可靠性很难有量化的指标时,性能的好快就成了一个非常关键的决策因子。

现在做任何事情都要看投入产出比,对应到数据库上其实就是性价比。POLARDB作为一款阿里自研数据库,经常被问的问题是:性能怎么样?能不能支撑我的业务?价格贵不贵?很显然,在早期调研阶段,对稳定性、可靠性很难有量化的指标时,性能的好快就成了一个非常关键的决策因子。

POLARDB在一开始设计时就把性能作为一项关键的需求指标列入产品需求说明书,从架构设计到新硬件选型,再到代码实现,从驱动到分布式块存储,再到分布式文件系统和数据库引擎,打通整个技术栈做协同优化,最终才能保证性能上有数量级的提升。

高性能背后的技术

image.png | left | 827x469

在2018杭州云栖大会上分享的这张架构图展示了POLARDB的内部细节。自下而上来看,POLARDB由__共享分布式存储PolarStore__,__分布式文件系统PolarFS__,__多节点的数据库集群PolarDB__和__提供统一入口的代理PolarProxy__这四部分组成。

PolarFS

PolarFS设计中采用了如下技术以充分发挥I/O性能:

  • PolarFS采用了绑定CPU的单线程有限状态机的方式处理I/O,避免了多线程I/O pipeline方式的上下文切换开销。
  • PolarFS优化了内存的分配,采用MemoryPool减少内存对象构造和析构的开销,采用巨页来降低分页和TLB更新的开销。
  • PolarFS通过中心加局部自治的结构,所有元数据均缓存在系统各部件的内存中,基本完全避免了额外的元数据I/O。
  • PolarFS采用了全用户空间I/O栈,包括RDMA和SPDK,避免了内核网络栈和存储栈的开销。

在相同硬件环境下的对比测试,PolarFS中数据块3副本写入性能接近于单副本本地SSD的延迟性能。从而在保障数据可靠性的同时,极大地提升POLARDB的单实例TPS性能。

PolarDB

在数据库PolarDB中开创性地引入了物理日志(Redo Log)代替了传统的逻辑日志,不仅极大地提升了复制的效率和准确性,还节省了50%的 I/O 操作,对于有频繁写入或更新的数据库,性能可提升50%以上。

image.png | left | 827x292

PolarProxy

PolarProxy存在的意义是可以把底层的多个计算节点的资源整合到一起,提供一个统一的入口,让应用程序访问,极大地降低了应用程序使用数据库的成本,也方便了从老系统到POLARDB的迁移和切换。本质上,PolarProxy是一个容量自适应的分布式无状态数据库代理集群,动态的横向扩展能力,可以将POLARDB快速增减读节点的优势发挥到极致,提升整个数据库集群的吞吐,访问它的ECS越多,并发越高,优势越明显。

关于成本

抛开成本谈性能,都是耍流氓。

首先,POLARDB存储与计算分离的架构,可以让CPU、内存和磁盘摆脱互相制约的困扰,让计算和存储作为单独的资源池进行管理和分配,大幅降低资源碎片,提升整体的资源利用率。计算和存储的机型不同,我们还可以更有针对性地做定制和优化,降低单位资源的成本。

通用意义上,规模效应带来的边际成本递减这件事,会一直发生。在阿里巴巴超大规模的基础设施的基础上,我们可以持续不断地从全球供应链、低能耗数据中心、服务器研发等多个维度来降低我们的成本。

性价比

不管技术上有多先进,成本上有多低,最终还是需要用户认可。

所以,我们从用户角度来看,最关心的其实还是性价比,即同样的费用,是否可以获取更好的性能。

我们简单算笔账,来看一下POLARDB和自建MySQL的性价比。

公平起见,我们使用同样的数据库配置,测试数据集和测试方法,然后分别计算出二者的价格和性能。

其中,

  • 数据库配置采用生产环境常见的『8核 32G ,500G存储』的配置
  • 数据集和测试方法采用通用的sysbench OLTP测试用例(--oltp-tables-count=10 --oltp-table-size=500000)
  • 性能指标我们取QPS(Query per Second 每秒钟处理请求数)和TPS( Transaction per Second 每秒钟处理事务数)

此外,不管是自建MySQL还是POLARDB,都具备了通过增加只读节点来达到横向扩展读(Scale out)的能力,不同的是,POLARDB随着节点数的增加,并不需要额外的存储费用,因此,我们需要多对比几种架构,从1个读节点到3个读节点,具体如下:

集群架构 POLARDB 月价(计算规格+存储) 自建MySQL 月价 POLARDB比RDS贵 POLARDB 性能(QPS) 自建MySQL性能(QPS) POLARDB性能提升 千元性能指标(RDS vs. POLARDB)
1主1备 2000*2 +1575=5575 4100+400=4500 +24% 53879.46 18625.49 +190% 4139 vs. 9664
1主2备 2000*3+1575=7575 (4100+400)+(5.13+0.001*400)*24*30=8481 -10% 66626.63 26357.94 +150% 3107 vs. 8795
1主3备 2000*4+1575=9575 (4100+400)+(5.13+0.001400)24302=12463 -23% 80268.27 43087.33 +86% 3457 vs. 8383

表中的一些基础价格(以2018.11.8 当天价格为例):

  • POLARDB存储月价:1575元/月 = 500GB * 3.5元/GB/月
  • POLARDB 1个节点的月价是2000元
  • MySQL高可用版实例(双节点)的月价是4100元
  • MySQL高可用版实例存储月价:400元/月 = 500GB * 0.8元/GB/月
  • MySQL只读实例小时价:5.13元/小时
  • MySQL只读实例存储小时价:0.001元/GB/小时

相关文章:

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
乙休
+关注
目录
打赏
0
0
0
0
9120
分享
相关文章
PolarDB开源数据库进阶课17 集成数据湖功能
本文介绍了如何在PolarDB数据库中接入pg_duckdb、pg_mooncake插件以支持数据湖功能, 可以读写对象存储的远程数据, 支持csv, parquet等格式, 支持delta等框架, 并显著提升OLAP性能。
67 1
PolarDB开源数据库进阶课15 集成DeepSeek等大模型
本文介绍了如何在PolarDB数据库中接入私有化大模型服务,以实现多种应用场景。实验环境依赖于Docker容器中的loop设备模拟共享存储,具体搭建方法可参考相关系列文章。文中详细描述了部署ollama服务、编译并安装http和openai插件的过程,并通过示例展示了如何使用这些插件调用大模型API进行文本分析和情感分类等任务。此外,还探讨了如何设计表结构及触发器函数自动处理客户反馈数据,以及生成满足需求的SQL查询语句。最后对比了不同模型的回答效果,展示了deepseek-r1模型的优势。
109 0
PolarDB开源数据库进阶课14 纯享单机版
PolarDB不仅支持基于“共享存储+多计算节点”的集群版,还提供类似开源PostgreSQL的单机版。单机版部署简单,适合大多数应用场景,并可直接使用PostgreSQL生态插件。通过Docker容器、Git克隆代码、编译软件等步骤,即可完成PolarDB单机版的安装与配置。具体操作包括启动容器、进入容器、克隆代码、编译软件、初始化实例、配置参数及启动数据库。此外,还有多个相关教程和视频链接供参考,帮助用户更好地理解和使用PolarDB单机版。
56 0
喜报|PolarDB开源社区荣获“2024数据库国内活跃开源项目”奖
喜报|PolarDB开源社区荣获“2024数据库国内活跃开源项目”奖
首届全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)圆满收官
首届全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)圆满收官
PolarDB开源数据库进阶课16 接入PostGIS全功能及应用举例
本文介绍了如何在PolarDB数据库中接入PostGIS插件全功能,实现地理空间数据处理。此外,文章还提供了使用PostGIS生成泰森多边形(Voronoi diagram)的具体示例,帮助用户理解其应用场景及操作方法。
48 1
世界第一!阿里云PolarDB登顶全球数据库性能及性价比排行榜!
2月26日,阿里云PolarDB在2025开发者大会上登顶全球数据库性能及性价比排行榜。此次突破标志着中国基础软件取得里程碑成就,PolarDB凭借创新的云原生架构,成功应对全球最大规模并发交易峰值,在性能、可扩展性等方面领先全球。
PolarDB开源数据库进阶课18 通过pg_bulkload适配pfs实现批量导入提速
本文介绍了如何修改 `pg_bulkload` 工具以适配 PolarDB 的 PFS(Polar File System),从而加速批量导入数据。实验环境依赖于 Docker 容器中的 loop 设备模拟共享存储。通过对 `writer_direct.c` 文件的修改,替换了一些标准文件操作接口为 PFS 对应接口,实现了对 PolarDB 15 版本的支持。测试结果显示,使用 `pg_bulkload` 导入 1000 万条数据的速度是 COPY 命令的三倍多。此外,文章还提供了详细的步骤和代码示例,帮助读者理解和实践这一过程。
53 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS