使用split_size优化的ODPS SQL的场景 首先有两个大背景需要说明如下: 说明1:split_size,设定一个map的最大数据输入量,单位M,默认256M。用户可以通过控制这个变量,从而达到对map端输入的控制。设置语句:set odps.sq
昨天,DataWorks推出了PYODPS任务类型,集成了Maxcompute的Python SDK,可在DataWorks的PYODPS节点上直接编辑Python代码操作Maxcompute,也可以设置调度任务来处理数据,提高数据开发效率。 效果如下图 适用
1. 本文背景 很多行业的信息系统中,例如金融行业的信息系统,相当多的数据交互工作是通过传统的文本文件进行交互的。此外,很多系统的业务日志和系统日志由于各种原因并没有进入ELK之类的日志分析系统,也是以文本文件的形式存在的。随着数据量的指数级增长,对超大文本
title: PgSQL · 最佳实践 · 从 ODPS 迁移数据到 HybridDB author: 曾文旌(义从) 背景 最近,不少用户在尝试使用 HybridDB 的过程中,询问我们如何把之前在 ODPS 中的数据迁移到 HybridDB。今天就跟大家
转载自jiyi 引言 本文面向的读者是要使用ODPS sql进行一些数据查询和挖掘,或者要使用ODPS udf自定义函数的用户。本文试图达到三个目标:(1)针对应用管理者来讲,看完本文后可以比较清晰的去管理自己的应用;(2)针对ODPS sql使用者来讲,本文
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Menlo; color: #000000; background-color: #ffffff} p.p2 {margin: 0.0px 0.0px 0
快速入门step by step MaxCompute Studio 创建完成 MaxCompute Java Module后,即可以开始开发Graph了。 代码示例 在examples目录下有graph的一些代码示例,可参考示例熟悉Graph程序的结构。
使用PyODPS库运行SQL,在申请odps实例前, 通过代码设置了odps运行环境: from odps import options options.sql.settings = {'odps.sql.mapper.split.size': 32}
 大数据计算服务