自然语言处理教程 原文:Natural Language Process 译者:飞龙 协议:CC BY-NC-SA 4.0 一、使用 NLTK 分析单词和句子 欢迎阅读自然语言处理系列教程,使用 Python 的自然语言工具包 NLTK 模块。 NLTK 模
之前需要做一个中文命名实体识别的api,看完了一些相关论文以后觉得短时间内自己实现不大现实,于是找了一些开源工具,其中哈工大的LTP效果是很好的,但是免费使用限流量,需要给钱才行; NLPIR的pynlpir似乎还不能支持命名实体识别等复杂工作,只能做一些分
干货!详述Python NLTK下如何使用stanford NLP工具包 作者:白宁超 2016年11月6日19:28:43 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开数据集、模型上提供了全面
前言 NLTK基础教程——用NLTK和Python库构建机器学习应用 这是一本介绍NLTK库,以及如何将该库与其他Python库搭配运用的书。NLTK是当前自然语言处理(NLP)社区中最为流行、使用最为广泛的库之一。NLTK的设计充分体现了简单的魅力。也就是
目前对中文分词精度影响最大的主要是两方面:未登录词的识别和歧义切分。 据统计:未登录词中中文姓人名在文本中一般只占2%左右,但这其中高达50%以上的人名会产生切分错误。在所有的分词错误中,与人名有关的错误占到了将近90%,这中国人名都是根据人的想法起的名字,
本节书摘来异步社区《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书中的第2章,第2.5节,作者:Nitin Hardeniya,更多章节内容可以访问云栖社区“异步社区”公众号查看。 2.5 词干提取 所谓词干提取(stemming),顾
Preface 前言 过去十年,数据存储变得更便宜,硬件变得更快,算法上也有了引人注目的进步,这一切为数据科学的快速兴起铺平了道路,并推动其发展成为计算领域最重要的机遇。虽然“数据科学”一词可以包含从数据清理、数据存储到用图形图表可视化数据的所有环节,但该领域
作者:Walker 目录 一.什么是命名实体识别 二.基于NLTK的命名实体识别 三.基于Stanford的NER 四.总结 一 、什么是命名实体识别? 命名实体识别(Named Entity Recognition,简称NE