1. 阿里云>
  2. 云栖社区>
  3. 主题地图>
  4. N>
  5. n元霍夫曼编码c语言

当前主题:n元霍夫曼编码c语言

n元霍夫曼编码c语言相关的博客

查看更多 写博客

word2vec原理(一) CBOW与Skip-Gram模型基础

word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。虽然源码是开源的,但是谷歌的代码库国内无法访问,因此本文的讲解word2vec原理以Github上的

阅读全文

word2vec原理(一) CBOW与Skip-Gram模型基础

1. 词向量基础     用词向量来表示词并不是word2vec的首创,在很久之前就出现了。最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1。比如我们有下面的5个词组成的词汇表,词"Queen"的

阅读全文

word2vec原理(二) 基于Hierarchical Softmax的模型

在word2vec原理(一) CBOW与Skip-Gram模型基础中,我们讲到了使用神经网络的方法来得到词向量语言模型的原理和一些问题,现在我们开始关注word2vec的语言模型如何改进传统的神经网络的方法。由于word2vec有两种改进方法,一种是基于Hi

阅读全文

学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

人工神经网络,借鉴生物神经网络工作原理数学模型。 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息。信息检索领域,模型训练合理排序模型,输入特征,文档质量、文档点击历史、文档前链数目、文档锚文本信息,为找特征隐藏信息,隐藏层神经元数

阅读全文

word2vec原理(二) 基于Hierarchical Softmax的模型

1. 基于Hierarchical Softmax的模型概述     我们先回顾下传统的神经网络词向量语言模型,里面一般有三层,输入层(词向量),隐藏层和输出层(softmax层)。里面最大的问题在于从隐藏层到输出的softmax层的计算量很大,因为要计算所有

阅读全文

我的Android进阶之旅------>Android中编解码学习笔记

编解码学习笔记(一):基本概念 媒体业务是网络的主要业务之间。尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析、应用开发、释放license收费等等。最近因为项目的关系,需要理清媒体的codec,比较搞的是

阅读全文