一,BP网络的限制 在人工神经网络的应用中,绝大部分的神经网络模型采用了BP网络及其变化形式,但这并不说明BP网络是完美的,其各种算法依然存在一定的局限性。BP网络的局限性主要有以下几个方面。 1,学习速率与稳定性的矛盾 梯度算法进行稳定学习要求的学习速率较小
学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算 法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于
人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好的自组织自学习能力等特点。BP(Back Propag
这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上。 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的
一、BP神经网络回顾 人工全连接神经网络 (1)每相邻两层之间的每个神经元之间都是有边相连的 (2)当输入层的特征维度变得很高时,这时全连接网络需要训练 的参数就会增大很多,计算速度就会变得很慢 传统神经网络存在的问题: (1)权
前言 本文主要是学习BP神经网络的一个总结,其本身也是机器学习中比较基础、适合入门的模型。 目前本人对于机器学习也还只是入门状态,对于很多名词仍然是一知半解(感觉机器学习中的很多术语本身也是模棱两可的),对于很多公式也是不求甚解,因此这篇文章是尝试用自己的语言
2016 年,谷歌 AlphaGo 下围棋战胜了人类世界冠军李世石;美国白宫发布了人工智能白皮书;微软研发的 AI 语音识别首次超过了人类...人工智能一跃成为产业发展的主要方向、科技进步的关键源动力。 相信很多人都注意到了这一趋势,但现实是:仍有许多朋友对
【新智元导读】UCL、帝国理工和微软的研究人员合作,将神经网络与决策树结合在一起,提出了一种新的自适应神经树模型ANT,打破往局限,可以基于BP算法做训练,在MNIST和CIFAR-10数据集上的准确率高达到99%和90%。 神经网络的成功关键在于其表示学习