前言 最近需要用到遗传算法来优化一些东西,最初是打算直接基于某些算法实现一个简单的函数来优化,但是感觉单纯写个非通用的函数运行后期改进算子或者别人使用起来都会带来困难,同时遗传算法基本概念和运行流程相对固定,改进也一般通过编码机制,选择策略,交叉变异算子以及参
前言 最近需要用到遗传算法来优化一些东西,最初是打算直接基于某些算法实现一个简单的函数来优化,但是感觉单纯写个非通用的函数运行后期改进算子或者别人使用起来都会带来困难,同时遗传算法基本概念和运行流程相对固定,改进也一般通过编码机制,选择策略,交叉变异算子以及参
前言 本文对遗传算法中的几种选择策略进行了总结, 其中包括: Proportionate Roulette Wheel Selection Linear Ranking Selection Exponential Ranking Selection Tourn
### 简介 从Python生态系统中发现现代的新一代测序文库,分析大量生物数据 主要特点 使用最重要的Python库和应用程序执行复杂的生物信息学分析 实施新一代测序,宏基因组学,自动化分析,群体遗传学等 探索生物信息学数据分析的各种统计和机器学习技术 生
本节书摘来异步社区《Python机器学习——预测分析核心算法》一书中的第1章,第1.4节,作者:【美】Michael Bowles(鲍尔斯),更多章节内容可以访问云栖社区“异步社区”公众号查看。 1.4 算法的选择 这2类算法的概要比较如表1-4所示。惩罚线
本节书摘来异步社区《Python机器学习——预测分析核心算法》一书中的第1章,第1.2节,作者:【美】Michael Bowles(鲍尔斯),更多章节内容可以访问云栖社区“异步社区”公众号查看。 1.2 什么是惩罚回归方法 惩罚线性回归方法是由普通最小二乘法
前 言 数据可视化旨在清楚明了地提供信息,帮助读者定性理解这些信息。俗话说,一图胜千字(百闻不如一见)。这里,可以换个说法,“一幅图讲述了一个故事,如同万语千言。”因此,可视化是一个宝贵的工具,有助于读者快速理解相应的概念。然而,与其说数据可视化是一种技
引言 毫无疑问,神经网络和机器学习在过去几年一直是高科技领域最热门的话题之一。这一点很容易看出,因为它们解决了很多真正有趣的用例,如语音识别、图像识别、甚至是乐曲谱写。因此,在这篇文章,我决定编制一份囊括一些很好的Python机器学习库的清单,并将其张贴在下