### Sarsa(λ) and Q(λ) in Tabular Case

‘Thanks R. S. Sutton and A. G. Barto for their great work in Reinforcement Learning: An I...

### Continuous Multi-Step TD, Eligibility Traces and TD(λ): A brief note

Thanks Richard S. Sutton and Andrew G. Barto for their great work in Reinforcement Learni...

### Reinforcement Learning in Continuous State and Action Spaces: A Brief Note

Thanks Hado van Hasselt for the great work. Introduction In the problems of sequentia...

### Fisher判别分析简述

Supervised Dimension Reduction Greater dimensionality always brings about more difficult...

### 浅析利用高斯核函数进行半监督分类

Laplacian Regularization In Least Square learning methods, we calculate the Euclidean di...

### Texmaker 4.5 for Windows x64 安装配置方法

Texmaker 是一款易用性很强的免费Latex编辑工具，支持Win/Linux/OS X。下面介绍下Texmaker的安装配置方法： 首先，为你的系统配置Latex发行版环...

### Actor - Critic Algorithms: A Brief Note

Actor - Critic A class of algorithms that precede Q-Learning and SARSA are actor - criti...

### A Brief Note about Boltzmann/Softmax Exploration Strategy

One method that is often used in combination with the RL algorithms is the Beltzmann or s...

### 常用无监督降维方法简述

Unsupervised Dimension Reduction Data with high dimension is always difficult to tackle....

### 局部异常因子与KL散度异常检测算法简述

Local Outlier Factor Given local outlier factors, we can detect the outliers that are al...

### Logistic回归与最小二乘概率分类算法简述与示例

Logistic Regression &amp; Least Square Probability Classification 1. Logistic Regressi...

### 止于至玄发表了文章：

Adaboost (Adaptive Boosting) Classifier Boosting algorithms try to aggregate a couple of...

### 集成剪枝分类算法的Bagging集成学习算法示例

Bagging (Bootstrap Aggregation) Pruning Classification is one of the simplest classifica...

### ID3决策树与C4.5决策树分类算法简述

Let’s begin with ID3 decision tree: The ID3 algorithm tries to get the most information ...

### 朴素贝叶斯分类算法简述

Naive Bayesian Algorithm Given some conditional probability, how to solve the conditiona...

### 机器学习中的常用距离

If x1,x2∈Rnx_{1}, x_{2}\in\mathbb{R}^{n}, then: 闵可夫斯基距离 Minkowski Distance d12=∑k=1n(x1k...

### Python机器学习之NumPy库初探

import numpy as np from numpy import * #matrix an overview mylist=[1,2,3,4,5] a=10 mymat...

2