《Python金融大数据分析》一1.4 结语

简介:

本节书摘来异步社区《Python金融大数据分析》一书中的第1章,第1.4节,作者: 【德】Yves Hilpisch(伊夫 希尔皮斯科)译者: 姚军 责编: 傅道坤,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.4 结语

Python作为一种语言——但是更多的是作为生态系统——是金融业理想的技术框架。它的特性中有许多好处,比如简洁的语法、高效的开发方法和原型化及生产的易用性等。利用Python大量的可用库和工具,似乎能够应付当今金融业中分析、数据量和频率、依从性及监管所引发的大部分问题。即使在较大型的金融机构中,它也具备提供单一、强大、一致性的框架,简化端到端开发和生产工作的潜力。

目录
打赏
0
0
0
0
1815
分享
相关文章
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
395 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
AI Agent 金融助理0-1 Tutorial 利用Python实时查询股票API的FinanceAgent框架构建股票(美股/A股/港股) AI Finance Agent
金融领域Finance AI Agents方面的工作,发现很多行业需求和用户输入的 query都是和查询股价/行情/指数/财报汇总/金融理财建议相关。如果需要准确的 金融实时数据就不能只依赖LLM 来生成了。常规的方案包括 RAG (包括调用API )再把对应数据和prompt 一起拼接送给大模型来做文本生成。稳定的一些商业机构的金融数据API基本都是收费的,如果是以科研和demo性质有一些开放爬虫API可以使用。这里主要介绍一下 FinanceAgent,github地址 https://github.com/AI-Hub-Admin/FinanceAgent
使用Python实现深度学习模型:智能金融风控与信用评估
【7月更文挑战第25天】 使用Python实现深度学习模型:智能金融风控与信用评估
11293 7
Python数据分析与机器学习在金融风控中的应用
Python数据分析与机器学习在金融风控中的应用
175 12
Python 金融编程第二版(三)(4)
Python 金融编程第二版(三)
46 2

热门文章

最新文章

目录