Java并发编程:CountDownLatch、CyclicBarrier和Semaphore

简介: 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法。

在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法。

  以下是本文目录大纲:

  一.CountDownLatch用法

  二.CyclicBarrier用法

  三.Semaphore用法

  若有不正之处请多多谅解,并欢迎批评指正。

  请尊重作者劳动成果,转载请标明原文链接:

  http://www.cnblogs.com/dolphin0520/p/3920397.html

  

一.CountDownLatch用法

  CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。

  CountDownLatch类只提供了一个构造器:

1
public  CountDownLatch( int  count) {  };   //参数count为计数值

   然后下面这3个方法是CountDownLatch类中最重要的方法:

1
2
3
public  void  await()  throws  InterruptedException { };    //调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行
public  boolean  await( long  timeout, TimeUnit unit)  throws  InterruptedException { };   //和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行
public  void  countDown() { };   //将count值减1

   下面看一个例子大家就清楚CountDownLatch的用法了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
public  class  Test {
      public  static  void  main(String[] args) {   
          final  CountDownLatch latch =  new  CountDownLatch( 2 );
          
          new  Thread(){
              public  void  run() {
                  try  {
                      System.out.println( "子线程" +Thread.currentThread().getName()+ "正在执行" );
                     Thread.sleep( 3000 );
                     System.out.println( "子线程" +Thread.currentThread().getName()+ "执行完毕" );
                     latch.countDown();
                 catch  (InterruptedException e) {
                     e.printStackTrace();
                 }
              };
          }.start();
          
          new  Thread(){
              public  void  run() {
                  try  {
                      System.out.println( "子线程" +Thread.currentThread().getName()+ "正在执行" );
                      Thread.sleep( 3000 );
                      System.out.println( "子线程" +Thread.currentThread().getName()+ "执行完毕" );
                      latch.countDown();
                 catch  (InterruptedException e) {
                     e.printStackTrace();
                 }
              };
          }.start();
          
          try  {
              System.out.println( "等待2个子线程执行完毕..." );
             latch.await();
             System.out.println( "2个子线程已经执行完毕" );
             System.out.println( "继续执行主线程" );
         catch  (InterruptedException e) {
             e.printStackTrace();
         }
      }
}

   执行结果:

复制代码
线程Thread-0正在执行
线程Thread-1正在执行
等待2个子线程执行完毕...
线程Thread-0执行完毕
线程Thread-1执行完毕
2个子线程已经执行完毕
继续执行主线程
复制代码

二.CyclicBarrier用法

  字面意思回环栅栏,通过它可以实现让一组线程等待至某个状态之后再全部同时执行。叫做回环是因为当所有等待线程都被释放以后,CyclicBarrier可以被重用。我们暂且把这个状态就叫做barrier,当调用await()方法之后,线程就处于barrier了。

  CyclicBarrier类位于java.util.concurrent包下,CyclicBarrier提供2个构造器:

1
2
3
4
5
public  CyclicBarrier( int  parties, Runnable barrierAction) {
}
 
public  CyclicBarrier( int  parties) {
}

  参数parties指让多少个线程或者任务等待至barrier状态;参数barrierAction为当这些线程都达到barrier状态时会执行的内容。

  然后CyclicBarrier中最重要的方法就是await方法,它有2个重载版本:

1
2
public  int  await()  throws  InterruptedException, BrokenBarrierException { };
public  int  await( long  timeout, TimeUnit unit) throws  InterruptedException,BrokenBarrierException,TimeoutException { };

   第一个版本比较常用,用来挂起当前线程,直至所有线程都到达barrier状态再同时执行后续任务;

  第二个版本是让这些线程等待至一定的时间,如果还有线程没有到达barrier状态就直接让到达barrier的线程执行后续任务。

  下面举几个例子就明白了:

  假若有若干个线程都要进行写数据操作,并且只有所有线程都完成写数据操作之后,这些线程才能继续做后面的事情,此时就可以利用CyclicBarrier了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public  class  Test {
     public  static  void  main(String[] args) {
         int  N =  4 ;
         CyclicBarrier barrier  =  new  CyclicBarrier(N);
         for ( int  i= 0 ;i<N;i++)
             new  Writer(barrier).start();
     }
     static  class  Writer  extends  Thread{
         private  CyclicBarrier cyclicBarrier;
         public  Writer(CyclicBarrier cyclicBarrier) {
             this .cyclicBarrier = cyclicBarrier;
         }
 
         @Override
         public  void  run() {
             System.out.println( "线程" +Thread.currentThread().getName()+ "正在写入数据..." );
             try  {
                 Thread.sleep( 5000 );       //以睡眠来模拟写入数据操作
                 System.out.println( "线程" +Thread.currentThread().getName()+ "写入数据完毕,等待其他线程写入完毕" );
                 cyclicBarrier.await();
             catch  (InterruptedException e) {
                 e.printStackTrace();
             } catch (BrokenBarrierException e){
                 e.printStackTrace();
             }
             System.out.println( "所有线程写入完毕,继续处理其他任务..." );
         }
     }
}

   执行结果:

  View Code

  从上面输出结果可以看出,每个写入线程执行完写数据操作之后,就在等待其他线程写入操作完毕。

  当所有线程线程写入操作完毕之后,所有线程就继续进行后续的操作了。

  如果说想在所有线程写入操作完之后,进行额外的其他操作可以为CyclicBarrier提供Runnable参数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public  class  Test {
     public  static  void  main(String[] args) {
         int  N =  4 ;
         CyclicBarrier barrier  =  new  CyclicBarrier(N, new  Runnable() {
             @Override
             public  void  run() {
                 System.out.println( "当前线程" +Thread.currentThread().getName());   
             }
         });
         
         for ( int  i= 0 ;i<N;i++)
             new  Writer(barrier).start();
     }
     static  class  Writer  extends  Thread{
         private  CyclicBarrier cyclicBarrier;
         public  Writer(CyclicBarrier cyclicBarrier) {
             this .cyclicBarrier = cyclicBarrier;
         }
 
         @Override
         public  void  run() {
             System.out.println( "线程" +Thread.currentThread().getName()+ "正在写入数据..." );
             try  {
                 Thread.sleep( 5000 );       //以睡眠来模拟写入数据操作
                 System.out.println( "线程" +Thread.currentThread().getName()+ "写入数据完毕,等待其他线程写入完毕" );
                 cyclicBarrier.await();
             catch  (InterruptedException e) {
                 e.printStackTrace();
             } catch (BrokenBarrierException e){
                 e.printStackTrace();
             }
             System.out.println( "所有线程写入完毕,继续处理其他任务..." );
         }
     }
}

   运行结果:

复制代码
线程Thread-0正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2正在写入数据...
线程Thread-3正在写入数据...
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
当前线程Thread-3
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
复制代码

  从结果可以看出,当四个线程都到达barrier状态后,会从四个线程中选择一个线程去执行Runnable。

   下面看一下为await指定时间的效果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
public  class  Test {
     public  static  void  main(String[] args) {
         int  N =  4 ;
         CyclicBarrier barrier  =  new  CyclicBarrier(N);
         
         for ( int  i= 0 ;i<N;i++) {
             if (i<N- 1 )
                 new  Writer(barrier).start();
             else  {
                 try  {
                     Thread.sleep( 5000 );
                 catch  (InterruptedException e) {
                     e.printStackTrace();
                 }
                 new  Writer(barrier).start();
             }
         }
     }
     static  class  Writer  extends  Thread{
         private  CyclicBarrier cyclicBarrier;
         public  Writer(CyclicBarrier cyclicBarrier) {
             this .cyclicBarrier = cyclicBarrier;
         }
 
         @Override
         public  void  run() {
             System.out.println( "线程" +Thread.currentThread().getName()+ "正在写入数据..." );
             try  {
                 Thread.sleep( 5000 );       //以睡眠来模拟写入数据操作
                 System.out.println( "线程" +Thread.currentThread().getName()+ "写入数据完毕,等待其他线程写入完毕" );
                 try  {
                     cyclicBarrier.await( 2000 , TimeUnit.MILLISECONDS);
                 catch  (TimeoutException e) {
                     // TODO Auto-generated catch block
                     e.printStackTrace();
                 }
             catch  (InterruptedException e) {
                 e.printStackTrace();
             } catch (BrokenBarrierException e){
                 e.printStackTrace();
             }
             System.out.println(Thread.currentThread().getName()+ "所有线程写入完毕,继续处理其他任务..." );
         }
     }
}

   执行结果:

复制代码
线程Thread-0正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-3正在写入数据...
java.util.concurrent.TimeoutException
Thread-1所有线程写入完毕,继续处理其他任务...
Thread-0所有线程写入完毕,继续处理其他任务...
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
java.util.concurrent.BrokenBarrierException
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
java.util.concurrent.BrokenBarrierException
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
Thread-2所有线程写入完毕,继续处理其他任务...
java.util.concurrent.BrokenBarrierException
线程Thread-3写入数据完毕,等待其他线程写入完毕
    at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)
    at java.util.concurrent.CyclicBarrier.await(Unknown Source)
    at com.cxh.test1.Test$Writer.run(Test.java:58)
Thread-3所有线程写入完毕,继续处理其他任务...
复制代码

  上面的代码在main方法的for循环中,故意让最后一个线程启动延迟,因为在前面三个线程都达到barrier之后,等待了指定的时间发现第四个线程还没有达到barrier,就抛出异常并继续执行后面的任务。

  另外CyclicBarrier是可以重用的,看下面这个例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
public  class  Test {
     public  static  void  main(String[] args) {
         int  N =  4 ;
         CyclicBarrier barrier  =  new  CyclicBarrier(N);
         
         for ( int  i= 0 ;i<N;i++) {
             new  Writer(barrier).start();
         }
         
         try  {
             Thread.sleep( 25000 );
         catch  (InterruptedException e) {
             e.printStackTrace();
         }
         
         System.out.println( "CyclicBarrier重用" );
         
         for ( int  i= 0 ;i<N;i++) {
             new  Writer(barrier).start();
         }
     }
     static  class  Writer  extends  Thread{
         private  CyclicBarrier cyclicBarrier;
         public  Writer(CyclicBarrier cyclicBarrier) {
             this .cyclicBarrier = cyclicBarrier;
         }
 
         @Override
         public  void  run() {
             System.out.println( "线程" +Thread.currentThread().getName()+ "正在写入数据..." );
             try  {
                 Thread.sleep( 5000 );       //以睡眠来模拟写入数据操作
                 System.out.println( "线程" +Thread.currentThread().getName()+ "写入数据完毕,等待其他线程写入完毕" );
             
                 cyclicBarrier.await();
             catch  (InterruptedException e) {
                 e.printStackTrace();
             } catch (BrokenBarrierException e){
                 e.printStackTrace();
             }
             System.out.println(Thread.currentThread().getName()+ "所有线程写入完毕,继续处理其他任务..." );
         }
     }
}

   执行结果:

  View Code

  从执行结果可以看出,在初次的4个线程越过barrier状态后,又可以用来进行新一轮的使用。而CountDownLatch无法进行重复使用。

三.Semaphore用法

  Semaphore翻译成字面意思为 信号量,Semaphore可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。

  Semaphore类位于java.util.concurrent包下,它提供了2个构造器:

1
2
3
4
5
6
public  Semaphore( int  permits) {           //参数permits表示许可数目,即同时可以允许多少线程进行访问
     sync =  new  NonfairSync(permits);
}
public  Semaphore( int  permits,  boolean  fair) {     //这个多了一个参数fair表示是否是公平的,即等待时间越久的越先获取许可
     sync = (fair)?  new  FairSync(permits) :  new  NonfairSync(permits);
}

   下面说一下Semaphore类中比较重要的几个方法,首先是acquire()、release()方法:

1
2
3
4
public  void  acquire()  throws  InterruptedException {  }      //获取一个许可
public  void  acquire( int  permits)  throws  InterruptedException { }     //获取permits个许可
public  void  release() { }           //释放一个许可
public  void  release( int  permits) { }     //释放permits个许可

  acquire()用来获取一个许可,若无许可能够获得,则会一直等待,直到获得许可。

  release()用来释放许可。注意,在释放许可之前,必须先获获得许可。

  这4个方法都会被阻塞,如果想立即得到执行结果,可以使用下面几个方法:

1
2
3
4
public  boolean  tryAcquire() { };     //尝试获取一个许可,若获取成功,则立即返回true,若获取失败,则立即返回false
public  boolean  tryAcquire( long  timeout, TimeUnit unit)  throws  InterruptedException { };   //尝试获取一个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false
public  boolean  tryAcquire( int  permits) { };  //尝试获取permits个许可,若获取成功,则立即返回true,若获取失败,则立即返回false
public  boolean  tryAcquire( int  permits,  long  timeout, TimeUnit unit)  throws  InterruptedException { };  //尝试获取permits个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false

   另外还可以通过availablePermits()方法得到可用的许可数目。

  下面通过一个例子来看一下Semaphore的具体使用:

  假若一个工厂有5台机器,但是有8个工人,一台机器同时只能被一个工人使用,只有使用完了,其他工人才能继续使用。那么我们就可以通过Semaphore来实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public  class  Test {
     public  static  void  main(String[] args) {
         int  N =  8 ;             //工人数
         Semaphore semaphore =  new  Semaphore( 5 );  //机器数目
         for ( int  i= 0 ;i<N;i++)
             new  Worker(i,semaphore).start();
     }
     
     static  class  Worker  extends  Thread{
         private  int  num;
         private  Semaphore semaphore;
         public  Worker( int  num,Semaphore semaphore){
             this .num = num;
             this .semaphore = semaphore;
         }
         
         @Override
         public  void  run() {
             try  {
                 semaphore.acquire();
                 System.out.println( "工人" + this .num+ "占用一个机器在生产..." );
                 Thread.sleep( 2000 );
                 System.out.println( "工人" + this .num+ "释放出机器" );
                 semaphore.release();           
             catch  (InterruptedException e) {
                 e.printStackTrace();
             }
         }
     }
}

    执行结果:

复制代码
工人0占用一个机器在生产...
工人1占用一个机器在生产...
工人2占用一个机器在生产...
工人4占用一个机器在生产...
工人5占用一个机器在生产...
工人0释放出机器
工人2释放出机器
工人3占用一个机器在生产...
工人7占用一个机器在生产...
工人4释放出机器
工人5释放出机器
工人1释放出机器
工人6占用一个机器在生产...
工人3释放出机器
工人7释放出机器
工人6释放出机器
复制代码

  

  下面对上面说的三个辅助类进行一个总结:

  1)CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同:

    CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;

    而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;

    另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的。

  2)Semaphore其实和锁有点类似,它一般用于控制对某组资源的访问权限。

  参考资料:

  《Java编程思想》

目录
相关文章
|
6天前
|
安全 算法 Java
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第11天】 在Java中,高效的并发编程是提升应用性能和响应能力的关键。本文将探讨Java并发的核心概念,包括线程安全、锁机制、线程池以及并发集合等,同时提供实用的编程技巧和最佳实践,帮助开发者在保证线程安全的前提下,优化程序性能。我们将通过分析常见的并发问题,如竞态条件、死锁,以及如何利用现代Java并发工具来避免这些问题,从而构建更加健壮和高效的多线程应用程序。
|
2天前
|
设计模式 运维 安全
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第15天】在Java开发中,多线程编程是提升应用程序性能和响应能力的关键手段。然而,它伴随着诸多挑战,尤其是在保证线程安全的同时如何避免性能瓶颈。本文将探讨Java并发编程的核心概念,包括同步机制、锁优化、线程池使用以及并发集合等,旨在为开发者提供实用的线程安全策略和性能优化技巧。通过实例分析和最佳实践的分享,我们的目标是帮助读者构建既高效又可靠的多线程应用。
|
3天前
|
SQL 安全 Java
Java安全编程:防范网络攻击与漏洞
【4月更文挑战第15天】本文强调了Java安全编程的重要性,包括提高系统安全性、降低维护成本和提升用户体验。针对网络攻击和漏洞,提出了防范措施:使用PreparedStatement防SQL注入,过滤和转义用户输入抵御XSS攻击,添加令牌对抗CSRF,限制文件上传类型和大小以防止恶意文件,避免原生序列化并确保数据完整性。及时更新和修复漏洞是关键。程序员应遵循安全编程规范,保障系统安全。
|
4天前
|
Java 编译器
Java并发编程中的锁优化策略
【4月更文挑战第13天】 在Java并发编程中,锁是一种常见的同步机制,用于保证多个线程之间的数据一致性。然而,不当的锁使用可能导致性能下降,甚至死锁。本文将探讨Java并发编程中的锁优化策略,包括锁粗化、锁消除、锁降级等方法,以提高程序的执行效率。
11 4
|
5天前
|
Java 调度 开发者
Java 21时代的标志:虚拟线程带来的并发编程新境界
Java 21时代的标志:虚拟线程带来的并发编程新境界
14 0
|
5天前
|
存储 安全 Java
Java语法掌握:打好编程基础的关键(二)
Java语法掌握:打好编程基础的关键
37 0
|
5天前
|
存储 Java
Java语法掌握:打好编程基础的关键(一)
Java语法掌握:打好编程基础的关键
10 0
Java语法掌握:打好编程基础的关键(一)
|
6天前
|
存储 Java 关系型数据库
掌握Java 8 Stream API的艺术:详解流式编程(一)
掌握Java 8 Stream API的艺术:详解流式编程
34 1
|
8天前
|
Java 开发者
Java中的Lambda表达式:简洁、灵活的编程利器
在现代软件开发中,编写简洁、高效的代码是至关重要的。Java中的Lambda表达式为开发者提供了一种简洁、灵活的编程方式,使得代码更具可读性和可维护性。本文将探讨Lambda表达式的基本概念、语法结构以及在实际项目中的应用,以帮助读者更好地理解和运用这一强大的编程工具。
5 0
|
安全 Java
java中CyclicBarrier的使用
java中CyclicBarrier的使用