《嵌入式Linux与物联网软件开发——C语言内核深度解析》一2.3 位操作与寄存器

简介:

本节书摘来自异步社区《嵌入式Linux与物联网软件开发——C语言内核深度解析》一书中的第2章,第2.3节,作者朱有鹏 , 张先凤,更多章节内容可以访问云栖社区“异步社区”公众号查看。

2.3 位操作与寄存器

2.3.1 寄存器的操作

一般来说,一个SOC片内外设由若干个寄存器控制,IO操作的寄存器与内存统一编址,如果我们要操作片内外设,那么就是操作片内外设的控制寄存器。因此,控制硬件就是读写寄存器(寄存器亦可理解为特定地址的内存)。

SOC中一个寄存器的数据宽度一般是32bit,每个bit可以配置为0或者1,单个bit或相邻几个bit一起控制片上外设某个属性的状态。单个bit最多控制两种状态,三个bit最多控制8种状态。因此寄存器的特定bit配置为0或1,就可以实现对硬件的控制。

然而,CPU对寄存器读写一般都是按照寄存器的数据宽度一起读写(部分寄存器可以按照位读取,这里不讨论),即32bit读出,32bit写入。假设我们只想修改寄存器其中某个属性的状态,即修改寄存器特定位。那么就只能先整体读出来,然后将需要修改的部分修改后,再将修改后的值整体写入寄存器中,即读-改-写三部曲。并且我们只能修改需要修改的位,不能影响其他位。对寄存器特定位的操作分三种情况:清零、置1和取反。

2.3.2 寄存器特定位清零用&

如果希望将一个寄存器的某些特定位变成0而不影响其他位,可以构造一个合适的1和0组成的数,和这个寄存器原来的值进行位与操作,就可以将特定位清零。假设原来32位寄存器REG1中的值为0xAAAAAAAA,我们希望将bit8~bit15清零而其他位不变,将这个数与0xFFFF00FF进行位与即可。

REG1 &= 0xFFFF00FF;

经过上式的读-改-写后,REG1中的值为0xAAAA00AA,达到了特定位清零的目的。

2.3.3 寄存器特定位置1用|

如果希望将一个寄存器的某些特定位变成1而不影响其他位,可以构造一个合适的1和0组成的数,和这个寄存器原来的值进行位或操作,就可以将特定位置1。假设原来32位寄存器REG1中的值为0xAAAA00AA,我们希望将bit8~bit15置1而其他位不变,将这个数与0X0000FF00进行位或即可。

REG1 |= 0x0000FF00;

经过上式的读-改-写后,REG1中的值为0xAAAAFFAA,达到了特定位置1的目的。

2.3.4 寄存器特定位取反用~

如果希望将一个寄存器的某些特定位0变成1,而1变成0,即取反而不影响其他位,可以构造一个合适的1和0组成的数,和这个寄存器原来的值进行位异或操作,就可以将特定位取反。假设原来32位寄存器REG1中的值为0xAAAAAAAA,我们希望将bit8~bit15取反而其他位不变,将这个数与0X0000FF00进行位异或即可。

REG1 ^= 0x0000FF00;

经过上式的读-改-写后,REG1中的值为0xAAAA55AA,达到了特定位取反的目的。

学完本节,你会发现配置寄存器操作并没有想象的那么难,只要我们学会设置位操作的特定的构造数就行了。上面举的例子是bit8~bit15,很好算。但如果要构造一个bit1、bit3~bit5、bit15~bit17位为1的数。傻眼了?一步步来,先用二进制挨个排列好0011 1000 0000 0011 1010,再换算成十六进制0X0003803A,总算算出来了。是不是非要这么麻烦呢?我们既然已经学习了位运算,能不能用位运算构建一个构造数呢?

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
14天前
|
Linux C语言
Linux内核队列queue.h
Linux内核队列queue.h
|
16天前
|
Linux 编译器 开发者
Linux设备树解析:桥接硬件与操作系统的关键架构
在探索Linux的庞大和复杂世界时🌌,我们经常会遇到许多关键概念和工具🛠️,它们使得Linux成为了一个强大和灵活的操作系统💪。其中,"设备树"(Device Tree)是一个不可或缺的部分🌲,尤其是在嵌入式系统🖥️和多平台硬件支持方面🔌。让我们深入了解Linux设备树是什么,它的起源,以及为什么Linux需要它🌳。
Linux设备树解析:桥接硬件与操作系统的关键架构
|
20天前
|
JSON 机器人 Linux
推荐一款嵌入式Linux开源框架与封装-cpp-tbox
推荐一款嵌入式Linux开源框架与封装-cpp-tbox
50 3
|
13天前
|
存储 编译器 C语言
嵌入式C语言(六)
嵌入式C语言(六)
19 0
|
17天前
|
存储 编译器 Linux
【C语言】自定义类型:结构体深入解析(二)结构体内存对齐&&宏offsetof计算偏移量&&结构体传参
【C语言】自定义类型:结构体深入解析(二)结构体内存对齐&&宏offsetof计算偏移量&&结构体传参
|
7天前
|
算法 Linux 调度
深入理解Linux内核的进程调度机制
【4月更文挑战第17天】在多任务操作系统中,进程调度是核心功能之一,它决定了处理机资源的分配。本文旨在剖析Linux操作系统内核的进程调度机制,详细讨论其调度策略、调度算法及实现原理,并探讨了其对系统性能的影响。通过分析CFS(完全公平调度器)和实时调度策略,揭示了Linux如何在保证响应速度与公平性之间取得平衡。文章还将评估最新的调度技术趋势,如容器化和云计算环境下的调度优化。
|
8天前
|
Linux 编译器 测试技术
嵌入式 Linux 下的 LVGL 移植
嵌入式 Linux 下的 LVGL 移植
|
12天前
|
算法 Linux 调度
深度解析:Linux内核的进程调度机制
【4月更文挑战第12天】 在多任务操作系统如Linux中,进程调度机制是系统的核心组成部分之一,它决定了处理器资源如何分配给多个竞争的进程。本文深入探讨了Linux内核中的进程调度策略和相关算法,包括其设计哲学、实现原理及对系统性能的影响。通过分析进程调度器的工作原理,我们能够理解操作系统如何平衡效率、公平性和响应性,进而优化系统表现和用户体验。
20 3
|
17天前
|
存储 搜索推荐 编译器
【C语言】一篇文章深入解析联合体和枚举且和结构体的区别
【C语言】一篇文章深入解析联合体和枚举且和结构体的区别
|
17天前
|
存储 网络协议 编译器
【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇
【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇

相关产品

  • 物联网平台