《深度学习导论及案例分析》一1.2深层网络的特点和优势

简介:

####本节书摘来自华章出版社《深度学习导论及案例分析》一书中的第1章,第1.2节,作者李玉鑑 张婷,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.2深层网络的特点和优势

神经网络由许多简单的、互连的称为神经元的处理器组成。每一个神经元产生一系列的实值激活[73],其中输入神经元通过传感器激活,其余神经元通过连接激活。

例如,图1.1是两个浅层网络的例子,其中图1.1a是一个单隐层的普通神经
网络,图1.1b是一个单隐层的和积网络。图1.2是两个深层网络的例子,其中图1.2a是一个多层神经网络,图1.2b是一个多层和积网络。
QQ_20170524090500
QQ_20170524090515

根据Bengio的定义[8],深层网络由多层自适应非线性单元组成。换句话说,深层网络是非线性模块的级联,在所有层次上都包含可训练的参数。在理论上,深层网络和浅层网络的数学描述是类似的,而且都能够通过函数逼近表达数据的内在关系和本质特征。不过应注意,网络虽然在狭义上是指由神经元构成的神经网络,但在广义上可以指任何具有网络结构的学习模型。

迄今还没有公认的区分深层网络和浅层网络的深度划界标准。依据Schmidhuber的观点[73],深层网络和浅层网络可以用得分路径(或译为信度分配路径,Credit Assignment Path,CAP)深度加以区分。得分路径是一条可学习的、连接行为和结果的因果链。对于前馈神经网络,得分路径深度,也就是网络深度,是网络的隐含层数加1(输出层也是可学习的)。对于循环神经网络,得分路径长度可能是无限的,因为信号可以多次通过同一个层。一般认为深层网络至少包含3个非输入层或者CAP>2,而非常深的网络应该深度(或CAP)至少大于10。在工程实践中,深层网络通常是一个多层人工神经网络,可以包含多个隐含层和多达几百万个自由参数。

浅层网络对机器学习来说也很重要,包括单隐层网络[74]、高斯混合模型(Gaussian Mixture Model,GMM)[75]、隐马尔可夫模型(Hidden Markov Model,HMM)[76]、条件随机场(Conditionsl Random Field,CRF)[77]、支持向量机(Support Vector Machine,SVM)[78]、逻辑回归[79]、最大熵模型[80],等等。这些网络的共同特点是,它们都使用不超过三层的结构将原始输入信号变换到一个特征空间。毋庸置疑,浅层网络对解决许多简单的和有良好约束的问题非常有效,但在解决真实世界的复杂应用问题时,往往出现函数表达能力不足的情况。这是因为在处理某些问题时,可能需要指数增长的计算单元,而此时深层网络则可能仅需相对很少的计算单元[81]。

作为例子,不妨来分析一个具有递归结构的和积网络的函数表达能力。设输入变量的个数n=4i,其中i是正整数。l0代表输入层,其中第j个节点表示为l0j=xj,1≤j≤n。分别构造奇数层和偶数层的节点如下:

l2k+1j=l2k2j-1•l2k2j,0≤k≤i-1和1≤j≤22(i-k)-1

l2kj=λjkl2k-12j-1+μjkl2k-12j,1≤k≤i和1≤j≤22(i-k)(1.1)# 

其中,权值λjk和权值μjk都为正数。

该和积网络的输出f(x1,…,xn)=l2i1∈R是一个单节点。当i=1时,网络共有3个非输入节点,结构如图1.3所示。由于对任意正整数i,QQ_20170524091416

这个和积网络在不计输入层时共有2i层,其中包含的(非输入)节点总数为1+2+4+8+…+22i-1=22i-1=4i-1=n-1,所以网络规模仅具有线性复杂度。显然,这个递归和积网络在i>1时是一个深层网络。
如果用图1.1b中的单隐层和积网络来计算函数f(x1,x2,…,xn),那么需要把它改写成输入变量乘积的加权和形式。当所有权值都取1时,可以得到下面的表达式:
f(x1,x2,…,x4i)=x1x2x5x6…x4i-1-3x4i-1-2+…(1.2)
由于在该表达式中乘积项的数量为m2i=2n-1,因此用单隐层和积网络计算需要2n-1个积节点和一个和节点,共需2n-1+1个节点,网络规模具有指数复杂度。因为在n较大时,2n-1+1将远远大于n-1,所以用浅层和积网络计算具有n个输入的函数,需要的节点个数可能比深层和积网络多得多。例如,当n=45=1024时,用浅层和积网络计算f(x1,…,xn)=l2i1,需要21024-1+1=231+1=2147483649个节点,而用深层和积网络仅需1024-1=1023个节点。

由此可见,在表达同样的复杂函数时,与浅层网络相比,深层网络可能只需要很少的节点和很少的参数。这意味着,在总节点数大致相同的情况下,深层网络通常比浅层网络的函数表达能力更强。

相关文章
|
5天前
|
安全 网络安全 数据库
01-Web 网络安全纵观与前景分析
01-Web 网络安全纵观与前景分析
|
5天前
|
机器学习/深度学习 自然语言处理 运维
随机森林填充缺失值、BP神经网络在亚马逊评论、学生成绩分析研究2案例合集2
随机森林填充缺失值、BP神经网络在亚马逊评论、学生成绩分析研究2案例合集
|
5天前
|
机器学习/深度学习 存储 数据采集
随机森林填充缺失值、BP神经网络在亚马逊评论、学生成绩分析研究2案例合集1
随机森林填充缺失值、BP神经网络在亚马逊评论、学生成绩分析研究2案例合集
|
5天前
|
机器学习/深度学习 自然语言处理 算法
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
|
5天前
|
机器学习/深度学习 监控 数据可视化
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例2
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例
|
5天前
|
机器学习/深度学习 数据可视化 算法
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例1
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例
|
6天前
|
存储 SQL 安全
数字堡垒的构筑者:网络安全与信息安全的深层剖析
【5月更文挑战第5天】在数字化时代的浪潮中,每一次键入和点击都可能是安全威胁的潜伏点。本文将深入探讨网络安全的漏洞、加密技术的最新进展以及提升个人和企业的安全意识的重要性。通过分析当前网络环境中存在的风险,我们将揭示如何利用先进的加密方法和防御策略来构建一个更加安全的网络环境。文章还将强调持续教育和培训在维持信息完整性方面的核心作用,为读者提供一系列切实可行的安全建议。
|
9天前
|
SQL 监控 安全
数字堡垒的构筑者:网络安全与信息安全的深层剖析
【5月更文挑战第3天】 在信息技术迅猛发展的今日,网络已成为日常生活和商业活动不可或缺的一部分。然而,随着依赖度的提升,网络安全威胁也日益增多,给个人隐私保护、企业资料安全以及国家安全带来严峻挑战。本文将深入探讨网络安全漏洞的成因与类型、加密技术的进展与应用,以及提升全民网络安全意识的重要性和方法。通过分析当前网络安全面临的风险与挑战,我们旨在为读者提供一系列切实可行的防护策略,以强化数字世界的安全防线。
|
11天前
|
机器学习/深度学习 安全 网络安全
数字堡垒的构筑者:网络安全与信息安全的深层剖析构建高效微服务架构:后端开发的新趋势
【4月更文挑战第30天】在信息技术高速发展的今天,构建坚不可摧的数字堡垒已成为个人、企业乃至国家安全的重要组成部分。本文深入探讨网络安全漏洞的本质、加密技术的进展以及提升安全意识的必要性,旨在为读者提供全面的网络安全与信息安全知识框架。通过对网络攻防技术的解析和案例研究,我们揭示了防御策略的关键点,并强调了持续教育在塑造安全文化中的作用。
|
11天前
|
SQL 安全 物联网
数字堡垒之钥:网络安全与信息安全的深层防护
【4月更文挑战第30天】 在数字化时代,信息成为最宝贵的资产之一。然而,随之而来的是网络安全威胁的日益增加。本文将深入探讨网络安全漏洞的本质、加密技术的最新发展以及提升安全意识的重要性。通过分析网络攻击的常见形式,我们揭示了防御策略的关键要素,并讨论了如何通过多层次的安全措施来构建坚固的防御体系。文章的目的是为读者提供一把打开数字世界保护伞的钥匙,确保个人和组织的资产安全。