《Spark大数据分析:核心概念、技术及实践》一3.3 应用运行

简介:

本节书摘来自华章出版社《Spark大数据分析:核心概念、技术及实践》一书中的第3章,第3.1节,作者[美] 穆罕默德·古勒(Mohammed Guller),更多章节内容可以访问云栖社区“华章计算机”公众号查看。



3.3 应用运行 

本节主要描述数据处理代码是怎么在Spark集群中执行的。

3.3.1 术语

先来看看几个术语的定义。

shuffle操作。shuffle操作是指在集群节点上对数据进行重新分配。这是一个耗时操作,因为它涉及在网络间传输数据。需要注意的是,shuffle操作不是对数据进行随机重新分配,它按照某些标准将数据分成不同的集合。每一个集合就是一个新的分区。

作业。作业是一系列计算的集合,Spark执行这些计算并将结果返回给驱动程序。作业本质上就是在Spark集群上运行数据处理算法。一个应用程序可以发起多个作业。本章稍后将会介绍作业是怎么执行的。

阶段。一个阶段由若干个任务构成。Spark将一个作业分解为一个由若干个阶段构成的DAG,每一个阶段依赖于其他阶段。举个例子,把一个作业分解为阶段0和阶段1两个阶段。只有当阶段0完成之后,才可以开始阶段1。Spark利用shuffle边界将任务分成不同的阶段。不要求shuffle操作的任务属于同一阶段。只有在开始一个新阶段时,任务才需要输入数据是经过shuffle操作的。

3.3.2 应用运行过程

有了上面的这些定义,我们就可以描述一个Spark应用在集群节点上并行处理数据的过程。当一个Spark应用开始运行的时候,Spark会连接集群管理员,获取在worker节点上的执行者资源。就像前面所说的,Spark应用把一个数据处理算法当成一个作业提交。Spark将这个作业分解成由若干个阶段构成的DAG。然后,Spark在执行者上调度这些阶段的运行,调度操作由集群管理员提供的底层调度器实现。执行者并行地运行Spark提交的任务。

每一个Spark应用都有一组其自己的位于worker节点上的执行者。这样的设计有诸多好处。首先,不同应用中的任务由于运行在不同JVM之上,使得它们之间互相隔离。一个应用程序中的错误任务并不会让其他应用崩溃。其次,调度任务变得轻而易举。Spark一次只需要调度归属于同一应用的任务。它不用处理这样一种复杂情况,其中调度的多个任务属于多个并发执行的不同应用。

然而,这种设计也有不足之处。由于不同应用在不同的JVM进程中运行,因此它们之间就不太方便共享数据。即使它们可能在同一个worker节点上运行,它们也只能通过读写磁盘的方式共享数据。就像前面所说的,读写磁盘是耗时的操作。因此,应用间通过磁盘共享数据,将会遇到性能问题。

相关文章
|
3月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
162 71
|
7天前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
117 79
|
4月前
|
数据采集 监控 数据可视化
BI工具在数据分析和业务洞察中的应用
BI工具在数据分析和业务洞察中的应用
141 11
|
4月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
183 5
|
18天前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
58 9
|
3月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
176 73
|
22天前
|
运维 自然语言处理 算法
云栖实录 | 大模型在大数据智能运维的应用实践
云栖实录 | 大模型在大数据智能运维的应用实践
|
2月前
|
存储 分布式计算 调度
Spark Master HA 主从切换过程不会影响到集群已有作业的运行, 为什么?
Spark Master 的高可用性(HA)机制确保主节点故障时,备用主节点能无缝接管集群管理,保障稳定运行。关键在于: 1. **Driver 和 Executor 独立**:任务执行不依赖 Master。 2. **应用状态保持**:备用 Master 通过 ZooKeeper 恢复集群状态。 3. **ZooKeeper 协调**:快速选举新 Master 并同步状态。 4. **容错机制**:任务可在其他 Executor 上重新调度。 这些特性保证了集群在 Master 故障时仍能正常运行。
|
2月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
103 22
|
3月前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
116 5