String 也能做性能优化,我只能说牛逼!

简介: String字符串是系统里最常用的类型之一,在系统中占据了很大的内存,因此,高效地使用字符串,对系统的性能有较好的提升。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

String字符串是系统里最常用的类型之一,在系统中占据了很大的内存,因此,高效地使用字符串,对系统的性能有较好的提升。
针对字符串的优化,我在工作与学习过程总结了以下三种方案作分享:

一.优化构建的超大字符串

验证环境:jdk1.8
反编译工具:jad
1.下载反编译工具jad,百度下载
2.验证
先执行一段例子1代码:

public class test3 {
    public static void main(String[] args) {
        String str="ab"+"cd"+"ef"+"123";
    }
}

执行完成后,用反编译工具jad进行反编译:jad -o -a -s d.java test.class
反编译后的代码:

package example;
public class test
{
    public test()
    {
    //    0    0:aload_0         
    //    1    1:invokespecial   #1   <Method void Object()>
    //    2    4:return          
    }
    public static void main(String args[])
    {
        String str = "abcdef123";
    //    0    0:ldc1            #2   <String "abcdef123">
    //    1    2:astore_1        
    //    2    3:return          
    }
}

案例2:

public class test1 {
    public static void main(String[] args)
    {
        String s = "abc";
        String ss = "ok" + s + "xyz" + 5;
        System.out.println(ss);
    }
}

用反编译工具jad执行jad -o -a -s d.java test1.class进行反编译后:

package example;

import java.io.PrintStream;

public class test1
{
    public test1()
    {
    //    0    0:aload_0         
    //    1    1:invokespecial   #1   <Method void Object()>
    //    2    4:return          
    }
    public static void main(String args[])
    {
        String s = "abc";
    //    0    0:ldc1            #2   <String "abc">
    //    1    2:astore_1        
        String ss = (new StringBuilder()).append("ok").append(s).append("xyz").append(5).toString();
    //    2    3:new             #3   <Class StringBuilder>
    //    3    6:dup             
    //    4    7:invokespecial   #4   <Method void StringBuilder()>
    //    5   10:ldc1            #5   <String "ok">
    //    6   12:invokevirtual   #6   <Method StringBuilder StringBuilder.append(String)>
    //    7   15:aload_1         
    //    8   16:invokevirtual   #6   <Method StringBuilder StringBuilder.append(String)>
    //    9   19:ldc1            #7   <String "xyz">
    //   10   21:invokevirtual   #6   <Method StringBuilder StringBuilder.append(String)>
    //   11   24:iconst_5        
    //   12   25:invokevirtual   #8   <Method StringBuilder StringBuilder.append(int)>
    //   13   28:invokevirtual   #9   <Method String StringBuilder.toString()>
    //   14   31:astore_2        
        System.out.println(ss);
    //   15   32:getstatic       #10  <Field PrintStream System.out>
    //   16   35:aload_2         
    //   17   36:invokevirtual   #11  <Method void PrintStream.println(String)>
    //   18   39:return          
    }
}

根据反编译结果,可以看到内部其实是通过StringBuilder进行字符串拼接的。
推荐看下:java.lang.String 的 + 号操作到底做了什么?
再来执行例3的代码:

public class test2 {
    public static void main(String[] args) {
        String s = "";
        Random rand = new Random();
        for (int i = 0; i < 10; i++) {
            s = s + rand.nextInt(1000) + " ";
        }
        System.out.println(s);
    }
}

用反编译工具jad执行jad -o -a -s d.java test2.class进行反编译后,发现其内部同样是通过StringBuilder来进行拼接的:

package example;
import java.io.PrintStream;
import java.util.Random;
public class test2
{
    public test2()
    {
    //    0    0:aload_0         
    //    1    1:invokespecial   #1   <Method void Object()>
    //    2    4:return          
    }
    public static void main(String args[])
    {
        String s = "";
    //    0    0:ldc1            #2   <String "">
    //    1    2:astore_1        
        Random rand = new Random();
    //    2    3:new             #3   <Class Random>
    //    3    6:dup             
    //    4    7:invokespecial   #4   <Method void Random()>
    //    5   10:astore_2        
        for(int i = 0; i < 10; i++)
    //*   6   11:iconst_0        
    //*   7   12:istore_3        
    //*   8   13:iload_3         
    //*   9   14:bipush          10
    //*  10   16:icmpge          55
            s = (new StringBuilder()).append(s).append(rand.nextInt(1000)).append(" ").toString();
    //   11   19:new             #5   <Class StringBuilder>
    //   12   22:dup             
    //   13   23:invokespecial   #6   <Method void StringBuilder()>
    //   14   26:aload_1         
    //   15   27:invokevirtual   #7   <Method StringBuilder StringBuilder.append(String)>
    //   16   30:aload_2         
    //   17   31:sipush          1000
    //   18   34:invokevirtual   #8   <Method int Random.nextInt(int)>
    //   19   37:invokevirtual   #9   <Method StringBuilder StringBuilder.append(int)>
    //   20   40:ldc1            #10  <String " ">
    //   21   42:invokevirtual   #7   <Method StringBuilder StringBuilder.append(String)>
    //   22   45:invokevirtual   #11  <Method String StringBuilder.toString()>
    //   23   48:astore_1        

    //   24   49:iinc            3  1
    //*  25   52:goto            13
        System.out.println(s);
    //   26   55:getstatic       #12  <Field PrintStream System.out>
    //   27   58:aload_1         
    //   28   59:invokevirtual   #13  <Method void PrintStream.println(String)>
    //   29   62:return          
    }
}

综上案例分析,发现字符串进行“+”拼接时,内部有以下几种情况:
1.“+”直接拼接的是常量变量,如"ab"+"cd"+"ef"+"123",内部编译就把几个连接成一个常量字符串处理;

  1. “+”拼接的含变量字符串,如案例2:"ok" + s + "xyz" + 5,内部编译其实是new 一个StringBuilder来进行来通过append进行拼接;
    3.案例3循环过程,实质也是“+”拼接含变量字符串,因此,内部编译时,也会创建StringBuilder来进行拼接。

对比三种情况,发现第三种情况每次做循环,都会新创建一个StringBuilder对象,这会增加系统的内存,反过来就会降低系统性能。
因此,在做字符串拼接时,单线程环境下,可以显性使用StringBuilder来进行拼接,避免每循环一次就new一个StringBuilder对象;在多线程环境下,可以使用线程安全的StringBuffer,但涉及到锁竞争,StringBuffer性能会比StringBuilder差一点。
这样,起到在字符串拼接时的优化效果。

二.如何使用String.intern节省内存?

在回答这个问题之前,可以先对一段代码进行测试:
1.首先在idea设置-XX:+PrintGCDetails -Xmx6G -Xmn3G,用来打印GC日志信息,设置如下图所示:

5DFC993A_AB15_4c42_9293_59989BDF505A

2.执行以下例子代码:

public class test4 {
    public static void main(String[] args) {
        final int MAX=10000000;
        System.out.println("不用intern:"+notIntern(MAX));
        System.out.println("使用intern:"+intern(MAX));
    }
    private static long notIntern(int MAX){
        long start = System.currentTimeMillis();
        for (int i = 0; i < MAX; i++) {
            int j = i % 100;
            String str = String.valueOf(j);
        }
        return System.currentTimeMillis() - start;
    }

    private static long intern(int MAX){
        long start = System.currentTimeMillis();
        for (int i = 0; i < MAX; i++) {
            int j = i % 100;
            String str = String.valueOf(j).intern();
        }
        return System.currentTimeMillis() - start;
    }
}

未使用intern的GC日志:

[GC (System.gc()) [PSYoungGen: 377487K->760K(2752512K)] 377487K->768K(2758656K), 0.0009102 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[Full GC (System.gc()) [PSYoungGen: 760K->0K(2752512K)] [ParOldGen: 8K->636K(6144K)] 768K->636K(2758656K), [Metaspace: 3278K->3278K(1056768K)], 0.0051214 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
Heap
 PSYoungGen      total 2752512K, used 23593K [0x0000000700000000, 0x00000007c0000000, 0x00000007c0000000)
  eden space 2359296K, 1% used [0x0000000700000000,0x000000070170a548,0x0000000790000000)
  from space 393216K, 0% used [0x0000000790000000,0x0000000790000000,0x00000007a8000000)
  to   space 393216K, 0% used [0x00000007a8000000,0x00000007a8000000,0x00000007c0000000)
 ParOldGen       total 6144K, used 636K [0x0000000640000000, 0x0000000640600000, 0x0000000700000000)
  object space 6144K, 10% used [0x0000000640000000,0x000000064009f2f8,0x0000000640600000)
 Metaspace       used 3284K, capacity 4500K, committed 4864K, reserved 1056768K
  class space    used 359K, capacity 388K, committed 512K, reserved 1048576K

根据打印的日志分析:没有使用intern情况下,执行时间为354ms,占用内存为24229k,推荐阅读:46张PPT弄懂JVM。
使用intern的GC日志:

[GC (System.gc()) [PSYoungGen: 613417K->1144K(2752512K)] 613417K->1152K(2758656K), 0.0012530 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[Full GC (System.gc()) [PSYoungGen: 1144K->0K(2752512K)] [ParOldGen: 8K->965K(6144K)] 1152K->965K(2758656K), [Metaspace: 3780K->3780K(1056768K)], 0.0079962 secs] [Times: user=0.02 sys=0.00, real=0.01 secs] 
Heap
 PSYoungGen      total 2752512K, used 15729K [0x0000000700000000, 0x00000007c0000000, 0x00000007c0000000)
  eden space 2359296K, 0% used [0x0000000700000000,0x0000000700f5c400,0x0000000790000000)
  from space 393216K, 0% used [0x0000000790000000,0x0000000790000000,0x00000007a8000000)
  to   space 393216K, 0% used [0x00000007a8000000,0x00000007a8000000,0x00000007c0000000)
 ParOldGen       total 6144K, used 965K [0x0000000640000000, 0x0000000640600000, 0x0000000700000000)
  object space 6144K, 15% used [0x0000000640000000,0x00000006400f1740,0x0000000640600000)
 Metaspace       used 3786K, capacity 4540K, committed 4864K, reserved 1056768K
  class space    used 420K, capacity 428K, committed 512K, reserved 1048576K

日志分析:没有使用intern情况下,执行时间为1515ms,占用内存为16694k;
综上所述:使用intern情况下,内存相对没有使用intern的情况要小,但在节省内存的同时,增加了时间复杂度。我试过将MAX=10000000再增加一个0的情况下,使用intern将会花费高达11秒的执行时间,可见,在遍历数据过大时,不建议使用intern。
因此,使用intern的前提,一定要考虑到具体的使用场景。
到这里,可以确定,使用String.intern确实可以节省内存。
接下来,分析一下intern在不同JDK版本的区别。
在JDK1.6中,字符串常量池在方法区中,方法区属于永久代。
在JDK1.7中,字符串常量池移到了堆中。
在JDK1.8中,字符串常量池移到了元空间里,与堆相独立。
分别在1.6、1.7、1.8版本执行以下一个例子:

public class test5 {
    public static void main(String[] args) {

        String s1=new String("ab");
        s.intern();
        String s2="ab";
        System.out.println(s1==s2);


        String s3=new String("ab")+new String("cd");
        s3.intern();
        String s4="abcd";
        System.out.println(s4==s3);
    }
}

1.6版本
执行结果:
fasle false
分析:
执行第一部分时:
1.代码编译时,先在字符串常量池里创建常量“ab";在调用new时,将在堆中创建一个String对象,字符串常量创建的“ab"存储到堆中,最后堆中的String对象返回一个引用给s1。
2.s.intern(),在字符串常量池里已经存在“ab”,便不再创建存放副本“ab";
3.s2="ab",s2指向的是字符串常量池里”ab",而s1指向的堆中的”ab",故两者不相等。5 个刁钻的 String 面试题!建议看下。
关注微信公众号:互联网架构师,在后台回复:2T,可以获取我整理的架构师全套干货。
该示意图如下:

535AD7EA_C3A1_4896_B062_355825122DA3

执行第二部分:
1.两个new出来相加的“abcd”存放在堆中,s3指向堆中的“abcd";
2.执行s3.intern(),在将“abcd"副本的存放到字符串常量池时,发现常量池里没有该”abcd",因此,成功存放;
3.s4="abcd"指向的是字符串常量池里已有的“abcd"副本,而s3指向的是堆中的"abcd",副本"abcd"的地址和堆中“abcd"地址不相同,故为false;
1.7版本
false true
执行第一部分:这一部分与jdk1.6基本类似,不同在于,s1.intern()返回的是引用,而不是副本。
执行第二部分:
1.new String("ab")+new String("cd"),先在常量池里生成“ab"和”cd",再在堆中生成“abcd";
2.执行s3.intern()时,会把“abcd”的对象引用放到字符串常量池里,发现常量池里还没有该引用,故可成功放入。当String s4="abcd",即把字符串常量池中”abcd“的引用地址赋值给s4,相当于s4指向了堆中”abcd"的地址,故s3==s4为true。
1.8版本
false true
参考网上一些博客,在1.8版本当中,使用intern()时,执行原理如下:
若字符串常量池中,包含了与当前对象相当的字符串,将返回常量池里的字符串;若不存在,则将该字符串存放进常量池里,并返回字符串的引用。
综上所述,可见三种版本当中,使用intern时,若字符串常量池里不存在相应字符串时,存在以下区别:
例如:
String s1=new String("ab"); s.intern();
jdk1.6:若字符串常量池里没有“ab",则会在常量池里存放一个“ab"副本,该副本地址与堆中的”ab"地址不相等;
jdk1.7:若字符串常量池里没有“ab",会将“ab”的对象引用放到字符串常量池里,该引用地址与堆中”ab"的地址相同;
jdk1.8:若字符串常量池中包含与当前对象相当的字符串,将返回常量池里的字符串;若不存在,则将该字符串存放进常量池里,并返回字符串的引用。
三.如何使用字符串的分割方法?
在简单进行字符串分割时,可以用indexOf替代split,因为split的性能不够稳定,故针对简单的字符串分割,可优先使用indexOf代替;

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-05-25
本文作者:lylDaisy
本文来自:“互联网架构师 微信公众号”,了解相关信息可以关注“互联网架构师

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
8月前
|
存储 监控 安全
String字符串性能优化的几种方案
String字符串是系统里最常用的类型之一,在系统中占据了很大的内存,因此,高效地使用字符串,对系统的性能有较好的提升。
84 0
|
存储 缓存 安全
深入探究,String字符串性能优化,原来还可以这样
深入探究,String字符串性能优化,原来还可以这样
深入探究,String字符串性能优化,原来还可以这样
|
存储 监控 安全
String 也能做性能优化,我只能说牛逼!
String字符串是系统里最常用的类型之一,在系统中占据了很大的内存,因此,高效地使用字符串,对系统的性能有较好的提升。 针对字符串的优化,我在工作与学习过程总结了以下三种方案作分享: 一.优化构建的超大字符串
String 也能做性能优化,我只能说牛逼!
|
9天前
|
Java API 索引
Java基础—笔记—String篇
本文介绍了Java中的`String`类、包的管理和API文档的使用。包用于分类管理Java程序,同包下类无需导包,不同包需导入。使用API时,可按类名搜索、查看包、介绍、构造器和方法。方法命名能暗示其功能,注意参数和返回值。`String`创建有两种方式:双引号创建(常量池,共享)和构造器`new`(每次新建对象)。此外,列举了`String`的常用方法,如`length()`、`charAt()`、`equals()`、`substring()`等。
14 0
|
24天前
|
Java
【Java】如果一个集合中类型是String如何使用拉姆达表达式 进行Bigdecimal类型计算?
【Java】如果一个集合中类型是String如何使用拉姆达表达式 进行Bigdecimal类型计算?
25 0
|
1月前
|
Java
Java String split()方法详细教程
Java String split()方法详细教程
20 0
|
1月前
|
安全 Java
Java StringBuffer 和 StringBuilder 类
Java StringBuffer 和 StringBuilder 类
15 0
|
1月前
|
存储 缓存 安全
【Java】Java中String不可变性的底层实现
【Java】Java中String不可变性的底层实现
9 0
|
1月前
|
Java 索引
Java中String方法学习总结_kaic
Java中String方法学习总结_kaic