数据结构实践——用哈希法组织关键字

简介: 本文是针对[数据结构基础系列(8):查找]中第11课时[哈希表——散列结构]和第12课时[哈希表的运算]的实践项目。【项目 - 用哈希法组织关键字】 已知一个关键字序列为if、while、for、case、do、break、else、struct、union、int、double、float、char、long、bool,共15个字符串,哈希函数H(key)为关键字的第

本文是针对[数据结构基础系列(8):查找]中第11课时[哈希表——散列结构]和第12课时[哈希表的运算]的实践项目。

【项目 - 用哈希法组织关键字】
已知一个关键字序列为if、while、for、case、do、break、else、struct、union、int、double、float、char、long、bool,共15个字符串,哈希函数H(key)为关键字的第一个字母在字母表中的序号,哈希表的表长为26。
(1)若处理冲突的方法采用线性探测法,请设计算法,输出每个关键字对应的H(key),输出哈希表,并求成功情况下的平均查找长度。

[参考解答]

#include <stdio.h>
#include <string.h>
#define N 15
#define M 26
int H(char *s)
{
    return ((*s-'a'+1)%M);
}

int main()
{
    char *s[N]= {"if", "while", "for", "case", "do", "break", "else", "struct", "union", "int", "double", "float", "char", "long", "bool"};
    int i, j, k;
    char HT[M][10];
    int Det[M];   //存放探测次数
    for(i=0; i<M; i++)
    {
        HT[i][0]='\0';
        Det[i]=0;
    }
    printf("字符串 key\tH(key)\n");
    printf("------------------------\n");
    for(i=0; i<N; i++)
    {
        j=H(s[i]);  //求哈希值
        printf("%s\t\t%d\n", s[i],j);
        k=0;   //探测次数初值
        while(1)
        {
            k++;    //累加探测次数
            if(HT[j][0]=='\0')   //当不冲突时,直接放到该处
            {
                strcpy(HT[j], s[i]);
                break;
            }
            else    //冲突时,采用线性探查法求下一个地址
            {
                j=(j+1)%M;
            }
        }
        Det[j]=k;
    }
    printf("---------------------\n");
    printf("哈希表\n");
    printf("位置\t字符串\t探查次数\n");
    printf("---------------------\n");
    for(i=0; i<M; i++)
        printf("%d\t%s\t%d\n", i, HT[i], Det[i]);
    printf("---------------------\n");
    k=0;
    for(i=0; i<M; i++)
        k+=Det[i];
    printf("查找成功情况下的平均查找长度 %f\n", 1.0*k/N);
    return 0;
}

(2)若处理冲突的方法采用链地址法,请设计算法,输出哈希表,并计算成功情况和不成功情况下的平均查找长度。

[参考解答]

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#define N 15
#define M 26
typedef struct node   //定义哈希链表的节点类型
{
    char *key;
    struct node *next;
} LNode;

typedef struct
{
    LNode *link;
} HTType;

int H(char *s)   //实现哈希函数
{
    return ((*s-'a'+1)%M);
}

//构造哈希表
void Hash(char *s[], HTType HT[])
{
    int i, j;
    LNode *q;
    for(i=0; i<M; i++)   //哈希表置初值
        HT[i].link=NULL;
    for(i=0; i<N; i++)   //存储每一个关键字
    {
        q=(LNode*)malloc(sizeof(LNode));   //创建新节点
        q->key = (char*)malloc(sizeof(strlen(s[i])+1));
        strcpy(q->key, s[i]);
        q->next=NULL;
        j=H(s[i]);    //求哈希值
        if(HT[j].link==NULL)   //不冲突,直接加入
            HT[j].link=q;
        else        //冲突时,采用前插法插入
        {
            q->next = HT[j].link;
            HT[j].link=q;
        }
    }
}

//输出哈希表
void DispHT(HTType HT[])
{
    int i;
    LNode *p;
    printf("哈希表\n");
    printf("位置\t关键字序列\n");
    printf("---------------------\n");
    for(i=0; i<M; i++)
    {
        printf(" %d\t", i);
        p=HT[i].link;
        while(p!=NULL)
        {
            printf("%s ", p->key);
            p=p->next;
        }
        printf("\n");
    }
    printf("---------------------\n");
}

//求查找成功情况下的平均查找长度
double SearchLength1(char *s[], HTType HT[])
{
    int i, k, count = 0;
    LNode *p;
    for(i=0; i<N; i++)
    {
        k=0;
        p=HT[H(s[i])].link;
        while(p!=NULL)
        {
            k++;   //p!=NULL,进入循环就要做一次查找
            if(strcmp(p->key, s[i])==0)   //若找到,则退出
                break;
            p=p->next;
        }
        count+=k;
    }
    return 1.0*count/N;   //成功情况仅有N种
}

//求查找不成功情况下的平均查找长度
double SearchLength2(HTType HT[])
{
    int i, k, count = 0;  //count为各种情况下不成功的总次数
    LNode *p;
    for(i=0; i<M; i++)
    {
        k=0;
        p=HT[i].link;
        while(p!=NULL)
        {
            k++;
            p=p->next;
        }
        count+=k;
    }
    return 1.0*count/M;   //不成功时,在表长为M的每个位置上均可能发生
}
int main()
{
    HTType HT[M];
    char *s[N]= {"if", "while", "for", "case", "do", "break", "else", "struct", "union", "int", "double", "float", "char", "long", "bool"};
    Hash(s, HT);
    DispHT(HT);
    printf("查找成功情况下的平均查找长度 %f\n", SearchLength1(s, HT));
    printf("查找不成功情况下的平均查找长度 %f\n", SearchLength2(HT));
    return 0;
}
目录
相关文章
|
28天前
|
存储 算法 C语言
【C/C++ 数据结构 树】探索C/C++中的二叉树:从理论到实践
【C/C++ 数据结构 树】探索C/C++中的二叉树:从理论到实践
60 0
|
1月前
|
Web App开发 存储 网络协议
C/C++ 数据结构设计与应用(四):C++数据压缩与传输:从理论到实践的全景解析
C/C++ 数据结构设计与应用(四):C++数据压缩与传输:从理论到实践的全景解析
58 3
|
1月前
|
存储 数据处理 C++
C/C++ 数据结构设计与应用(三):运算符重载的策略与实践 (Operator Overloading Strategies and Practices)
C/C++ 数据结构设计与应用(三):运算符重载的策略与实践 (Operator Overloading Strategies and Practices)
20 0
|
2月前
|
缓存 Rust 算法
Rust中的数据结构与算法优化实践
在Rust编程语言中,优化数据结构与算法是提高程序性能的关键。本文首先介绍了Rust的特点,然后重点讨论了如何在Rust中优化数据结构和算法,包括使用标准库中的高效数据结构、自定义数据结构的优化技巧、算法选择与改进、以及Rust特性如所有权和借用检查器的应用。通过实际案例,我们将展示如何在Rust中实现更高效的数据结构与算法。
|
4月前
|
Java 数据库连接 微服务
Java程序员必学知识:高并发+微服务+数据结构+Mybatis实战实践
BATJ最全架构技术合集:高并发+微服务+数据结构+SpringBoot 关于一线互联网大厂网站的一些特点:用户多,分布广泛、大流量,高并发、海量数据,服务高可用、安全环境恶劣,易受网络攻击、功能多,变更快,频繁发布、从小到大,渐进发展、以用户为中心。 如果你工作中够仔细,你会发现这些特点跟高并发、分布式、微服务、Nginx这些技术密切相关的,是因为只要你的公司在上升,用户量级都会与日俱增,高性能、高并发的问题自然避免不了,话不多说往下看。
|
4月前
|
存储 C语言
【数据结构实践课设】新生报道注册管理信息系统
【数据结构实践课设】新生报道注册管理信息系统
23 0
|
11月前
|
算法 前端开发 JavaScript
数据结构算法在专网项目中的实践
数据结构与算法作为计算机学科中至关重要的一门课程,在日常业务代码中常常很难用到或者说很难进行相关的实践,我们常常在leetcode中练习的习题感到没有用武之地。实际上,我们可以通过优化页面中的一些代码及在需求实现过程中对之前阅读过的源码或者之前练习过的习题进行相关的举一反三和触类旁通。本文列举了一些作者在日常业务代码书写过程中进行的一些相关数据结构算法的实践以及对于算法与数据结构练习的思考。
64 0
|
存储 算法 安全
数据结构-Hash常见操作实践
数据结构-Hash常见操作实践
167 0
数据结构上机实践第七周项目4 - 队列数组
数据结构上机实践第七周项目4 - 队列数组
数据结构上机实践第七周项目4 - 队列数组
数据结构上机实践第七周项目3 - 负数把正数赶出队列
数据结构上机实践第七周项目3 - 负数把正数赶出队列
数据结构上机实践第七周项目3 - 负数把正数赶出队列