zedstore开发版初体验

  1. 云栖社区>
  2. 博客>
  3. 正文

zedstore开发版初体验

小桥河西 2020-04-15 22:38:54 浏览812
展开阅读全文

1. 概述

zedstore是开发中的一个PostgreSQL的行列混合存储引擎,
其设计目标偏OLAP场景,但是又能支持所有OLTP的操作,包括MVCC,索引等。
在设计上当OLAP和OLTP的目标发生冲突时,会优先OLAP,所以OLTP的性能会差一点。

zedstore的设计目标参考下面的说明

https://www.postgresql.org/message-id/CALfoeiuF-m5jg51mJUPm5GN8u396o5sA2AF5N97vTRAEDYac7w%40mail.gmail.com

Motivations / Objectives

* Performance improvement for queries selecting subset of columns
  (reduced IO).
* Reduced on-disk footprint compared to heap table. Shorter tuple
  headers and also leveraging compression of similar type data
* Be first-class citizen in the Postgres architecture (tables data can
  just independently live in columnar storage)
* Fully MVCC compliant
* All Indexes supported
* Hybrid row-column store, where some columns are stored together, and
  others separately. Provide flexibility of granularity on how to
  divide the columns. Columns accessed together can be stored
  together.
* Provide better control over bloat (similar to zheap)
* Eliminate need for separate toast tables
* Faster add / drop column or changing data type of column by avoiding
  full rewrite of the table.

zedstore内部page中可以存储未压缩的单个tuple,也可以存储压缩过的多个tuple的集合。
每个tuple用TID标识,TID是个逻辑标识,不同于heap中TID代表物理位置。
在zedstore的整个数据文件中,表被切分成很多列族(类似hbase,当前的开发版本固定每列都是一个列族),
每个列族都是一个btree,按TID的顺序组织,整个zedstore数据文件就是一个btree的森林(和gin类似)。

+-----------------------------
| Fixed-size page header:
|
|   LSN
|   TID low and hi key (for Lehman & Yao B-tree operations)
|   left and right page pointers
|
| Items:
|
|   TID | size | flags | uncompressed size | lastTID | payload (containeritem)
|   TID | size | flags | uncompressed size | lastTID | payload (containeritem)
|   TID | size | flags | undo pointer | payload (plain item)
|   TID | size | flags | undo pointer | payload (plain item)
|   ...
|
+----------------------------

zedstore虽然在OLTP场景下的性能不是最优,由于zedstore支持数据压缩,将来可以用来存放OLTP库的冷数据。

下面做个简单的测试体验一下。

2. 测试环境

  • CentOS 7.3(16核128G SSD)
  • zedstore

3. 编译安装

3.1 下载zedstore源码

3.2 安装lz4

yum install lz4,lz4-devel

也可以下载lz4源码安装,但源码安装后要执行一次ldconfig。否则编译时configure可能出错。

3.3 编译

cd postgres-zedstore/
./configure --prefix=/usr/pgzedstore --with-lz4
make -j 16
make install
cd contrib/
make -j 16
make install

编译debug版,可以在configure上添加CFLAGS="-O0 -DOPTIMIZER_DEBUG -g3"参数

3.4 初始化实例

su - postgres
/usr/pgzedstore/bin/initdb /pgsql/datazedstore -E UTF8 --no-locale
/usr/pgzedstore/bin/pg_ctl -D /pgsql/datazedstore -l logfile restart -o'-p 5444'

4 测试

4.1 初始化测试库

/usr/pgzedstore/bin/pgbench -i -s 100 -p5444

4.2 heap表测试

[postgres@host10372181 ~]$/usr/pgzedstore/bin/pgbench -n -c 1 -j 1 -T 10 -p5444 -r -S
transaction type: <builtin: select only>
scaling factor: 100
query mode: simple
number of clients: 1
number of threads: 1
duration: 10 s
number of transactions actually processed: 61833
latency average = 0.162 ms
tps = 6183.241453 (including connections establishing)
tps = 6184.485276 (excluding connections establishing)
statement latencies in milliseconds:
         0.000  \set aid random(1, 100000 * :scale)
         0.161  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
[postgres@host10372181 ~]$/usr/pgzedstore/bin/pgbench -n -c 1 -j 1 -T 10 -p5444 -r -S -M prepared
transaction type: <builtin: select only>
scaling factor: 100
query mode: prepared
number of clients: 1
number of threads: 1
duration: 10 s
number of transactions actually processed: 158597
latency average = 0.063 ms
tps = 15859.550657 (including connections establishing)
tps = 15862.665007 (excluding connections establishing)
statement latencies in milliseconds:
         0.000  \set aid random(1, 100000 * :scale)
         0.062  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
[postgres@host10372181 ~]$/usr/pgzedstore/bin/pgbench -n -c 1 -j 1 -T 10 -p5444 -r  -M prepared
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 100
query mode: prepared
number of clients: 1
number of threads: 1
duration: 10 s
number of transactions actually processed: 18910
latency average = 0.529 ms
tps = 1890.901809 (including connections establishing)
tps = 1891.305759 (excluding connections establishing)
statement latencies in milliseconds:
         0.000  \set aid random(1, 100000 * :scale)
         0.000  \set bid random(1, 1 * :scale)
         0.000  \set tid random(1, 10 * :scale)
         0.000  \set delta random(-5000, 5000)
         0.021  BEGIN;
         0.113  UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
         0.053  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
         0.104  UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
         0.091  UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
         0.049  INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
         0.096  END;

4.2 创建zedstore表

create table pgbench_accounts2(like pgbench_accounts including all) using zedstore;
insert into pgbench_accounts2 select * from pgbench_accounts;
alter table pgbench_accounts rename to pgbench_accounts_old;
alter table pgbench_accounts2 rename to pgbench_accounts;

改造后,可以发现zedstore表的size小了很多。

postgres=# \d+
                                   List of relations
 Schema |         Name         | Type  |  Owner   | Persistence |  Size   | Description 
--------+----------------------+-------+----------+-------------+---------+-------------
 public | pgbench_accounts     | table | postgres | permanent   | 61 MB   | 
 public | pgbench_accounts_old | table | postgres | permanent   | 1283 MB | 
 public | pgbench_branches     | table | postgres | permanent   | 40 kB   | 
 public | pgbench_history      | table | postgres | permanent   | 992 kB  | 
 public | pgbench_tellers      | table | postgres | permanent   | 104 kB  | 
(5 rows)

压缩效果这么好和pgbench_accounts表中重复值非常多有关。

我们再构造一些随机的数据对比zedstore的压缩效果。

create table tb1(id int,c1 text);
insert into tb1 select id,md5(id::text) from generate_series(1,1000000)id;
create table tb2(id int,c1 text) using zedstore;
insert into tb2 select id,md5(id::text) from generate_series(1,1000000)id;

这个的压缩效果就差了很多,lz4压缩速度比较快,但其本身的压缩率比较低。

postgres=# select * from tb2 limit 5;
 id |                c1                
----+----------------------------------
  1 | c4ca4238a0b923820dcc509a6f75849b
  2 | c81e728d9d4c2f636f067f89cc14862c
  3 | eccbc87e4b5ce2fe28308fd9f2a7baf3
  4 | a87ff679a2f3e71d9181a67b7542122c
  5 | e4da3b7fbbce2345d7772b0674a318d5
(5 rows)
postgres=# \d+
                                   List of relations
 Schema |         Name         | Type  |  Owner   | Persistence |  Size   | Description 
--------+----------------------+-------+----------+-------------+---------+-------------
...
 public | tb1                  | table | postgres | permanent   | 65 MB   | 
 public | tb2                  | table | postgres | permanent   | 38 MB   | 
(7 rows)

4.3 zedstore表测试

[postgres@host10372181 ~]$/usr/pgzedstore/bin/pgbench -n -c 1 -j 1 -T 10 -p5444 -r -S
transaction type: <builtin: select only>
scaling factor: 100
query mode: simple
number of clients: 1
number of threads: 1
duration: 10 s
number of transactions actually processed: 3663
latency average = 2.730 ms
tps = 366.280735 (including connections establishing)
tps = 366.360837 (excluding connections establishing)
statement latencies in milliseconds:
         0.000  \set aid random(1, 100000 * :scale)
         2.729  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
[postgres@host10372181 ~]$/usr/pgzedstore/bin/pgbench -n -c 1 -j 1 -T 10 -p5444 -r -S -M prepared
transaction type: <builtin: select only>
scaling factor: 100
query mode: prepared
number of clients: 1
number of threads: 1
duration: 10 s
number of transactions actually processed: 3907
latency average = 2.560 ms
tps = 390.614280 (including connections establishing)
tps = 390.692250 (excluding connections establishing)
statement latencies in milliseconds:
         0.000  \set aid random(1, 100000 * :scale)
         2.559  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
[postgres@host10372181 ~]$/usr/pgzedstore/bin/pgbench -n -c 1 -j 1 -T 10 -p5444 -r  -M prepared
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 100
query mode: prepared
number of clients: 1
number of threads: 1
duration: 10 s
number of transactions actually processed: 811
latency average = 12.340 ms
tps = 81.036743 (including connections establishing)
tps = 81.053603 (excluding connections establishing)
statement latencies in milliseconds:
         0.001  \set aid random(1, 100000 * :scale)
         0.000  \set bid random(1, 1 * :scale)
         0.000  \set tid random(1, 10 * :scale)
         0.001  \set delta random(-5000, 5000)
         0.023  BEGIN;
        11.888  UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
         0.084  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
         0.081  UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
         0.095  UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
         0.052  INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
         0.112  END;

zedstore表和heap表的测试结果汇总如下(单位tps)

测试模式 预编译模式 heap表 zedstore表
selectonly simple 6184 366
selectonly prepared 15862 390
normal prepared 1891 81

4.4 聚合查询的性能对比

对前面创建的有100万记录的tb1和tb2表执行聚合查询,比对执行时间,单位毫秒。

postgres=# \d+ tb1
                                    Table "public.tb1"
 Column |  Type   | Collation | Nullable | Default | Storage  | Stats target | Description 
--------+---------+-----------+----------+---------+----------+--------------+-------------
 id     | integer |           |          |         | plain    |              | 
 c1     | text    |           |          |         | extended |              | 
Access method: heap

postgres=# \d+ tb2
                                    Table "public.tb2"
 Column |  Type   | Collation | Nullable | Default | Storage  | Stats target | Description 
--------+---------+-----------+----------+---------+----------+--------------+-------------
 id     | integer |           |          |         | plain    |              | 
 c1     | text    |           |          |         | extended |              | 
Access method: zedstore
SQL heap表 zedstore表
count(*) 77 356
count(1) 82 356
count(id) 98 294
max(id) 95 285
avg(id) 99 307

小结

从测试可以看出,目前的zedstore还没发挥出其行列混合存储应有的潜质,可能zedstore当前主要工作重心是确保逻辑正确性上,还没开始做性能上的优化。

网友评论

登录后评论
0/500
评论
小桥河西
+ 关注