零售数据分析要点

简介:         不要定性思维,流程不适合每个人。你现在要入门需要做的就是坚持每天看数据、记数据,这是培养数字敏感性,这个做好了,接下来,就要问为什么数据会变动,分析原因(促销、节日、天气、卖场宣传、卖场环境、消费心理、消费人群、价格、竞争对手等等),继续总结。
0.jpg

        不要定性思维,流程不适合每个人。你现在要入门需要做的就是坚持每天看数据、记数据,这是培养数字敏感性,这个做好了,接下来,就要问为什么数据会变动,分析原因(促销、节日、天气、卖场宣传、卖场环境、消费心理、消费人群、价格、竞争对手等等),继续总结。总结的结论需要你进行实际运用及跟踪结果,之后再分析,再得出结论。下面一起来看看一会这个行业资深人员的总结:

随着电商的发达,很多聪明人和资本开始重新进入零售这个古老的领域。但是零售的复杂性,远远超过很多人的想象——大到门店选址,小到货品码放位置,都要牵扯众多的数据和分析。

艾米特·考克斯为凯马特工作了27年,从推车、上货开始干,直到最后成为数据库市场营销和信息系统主管。他在数据分析方面颇有建树,先后在GE、沃尔玛等公司负责消费者分析的工作。对零售行业的不同侧重点——分析市场购物篮数据、吸引顾客冲动购买、运用数据分析直到决策、利用地理数据为门店选址、进行劳动力预测以及积分卡战略分析等等方面,提供了很多实用的分析工具和思路。

1.不少时候,当消费者进入商店时,他们会被问及一些关于此次购物的问题。当他们结束购物走出商店时,他们会再次被拦下参加调查。查看他们的购物小票就会发现,他们实际购买的商品和之前调查时说打算购买的商品往往不符。此类调查实行起来非常不容易,但得到的信息非常有效——消费者嘴里说的和真正打算做的未必一致。

2.数据的获取、存储和分析都要耗费不少资金,要先弄清楚自己想要从数据中得到什么,否则会陷入到无止境的数据追寻中。

3.跨渠道分析正在经历着大规模的扩张,其中包括将所有在线交易数据、线上消费者数据与店内交易、门店消费者数据相整合。这听起来简单,但做起来非常困难:你需要建立起客户关系管理机制,借此区别出每一位顾客身份。

4.在美国,我的团队成功构建了跨渠道、跨商品的市场营销结构,并在此基础上更进了一步,向原本几乎只在网上购物的顾客提供门店独有的促销优惠。这么做的意义在于,一旦顾客踏进商店大门,向他出手冲动型商品的概率就大了很多。在网上就很难激发顾客的冲动购买,哪怕线上顾客的确进行了冲动购买,我们也很难判断。

5.传统网站分析只关注点击流量,但现在许多公司已经开始把目光投向互联网客户管理(Internet Customer Management)。

6.利用市场购物篮数据分析商品的亲缘关系,能极大指导空间、货架的布局规划。我们可以找到一些合适的商品,以优惠价进行捆绑销售。虽然略微调低了商品的总价,但卖出的商品数量增加了,这能帮我们赚回可观的利润。

7.一些商品和购物篮中其他商品毫无关联(是冲动购买的),如果能让顾客更容易发现此类冲动型商品,销售量可以显著增长。最后我选定了3样商品放在收音机柜台上——一次性相机、4卷一组的透明胶带和12只装的AA电池。最终的统计显示,销售收益增加了数百万美元。

8.最佳商圈划分需要考虑人口密度、竞争对手店址、人口统计、住房、生活方式这些因素,还需要考虑自然屏障和交通模式(如道路网)。

9.英国乐购已经开始逐步停用天天平价的策略,表示这么做的最主要原因是顾客对天天平价不感冒。乐购已经积累下了大量消费者的数据,可以分析出他们最重要的客户群常购买哪些具有价格弹性的商品。这一分析结果是无价之宝。乐购可以据此来搭建定价体系,让顾客每天都能以低价购买他们最需要的商品,而无需降低商店里所有商品的价格。

10.我们淘汰了20%的商品,留出空间来排放销量最高的商品,并把亲缘关系密切的商品布局在一起,这一季度的销量有25%~30%的提升。

11.在美国,典型的百货商店占地5万~7万平方英尺,年销售额若要维持在2000万美元到4500万美元,就需要10万户家庭的人口基础。

12.我们帮助消费者估算如果他们继续在本店购物,未来每周、每月能省多少钱。这种做法的确改变了30%的顾客群的购物频率。

13.70%的利润是由30%的顾客带来的,你需要通过仔细的分析判断出这30%的顾客是谁,与此同等重要的是,找出那些只购买打折商品的顾客。


原文发布时间为:2013-08-28


本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关文章
|
8月前
|
关系型数据库 分布式数据库 对象存储
沉浸式学习PostgreSQL|PolarDB 5: 零售连锁、工厂等数字化率较低场景的数据分析
零售连锁, 制作业的工厂等场景中, 普遍数字化率较低, 通常存在这些问题: 数据离线, 例如每天盘点时上传, 未实现实时汇总到数据库中. 数据格式多, 例如excel, csv, txt, 甚至纸质手抄. 让我们一起来思考一下, 如何使用较少的投入实现数据汇总分析?
216 0
|
20天前
|
机器学习/深度学习 数据可视化 数据挖掘
Python跳水:探索数据分析的深渊
Python跳水:探索数据分析的深渊
22 0
|
14天前
|
机器学习/深度学习 数据采集 算法
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
|
2天前
|
数据采集 数据可视化 数据挖掘
如何利用Python中的Pandas库进行数据分析和可视化
Python的Pandas库是一种功能强大的工具,可以用于数据分析和处理。本文将介绍如何使用Pandas库进行数据分析和可视化,包括数据导入、清洗、转换以及基本的统计分析和图表绘制。通过学习本文,读者将能够掌握利用Python中的Pandas库进行高效数据处理和可视化的技能。
|
4天前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析的5个必备技巧
【5月更文挑战第9天】本文介绍了Python数据分析的五个关键技巧:1) 使用Pandas进行数据处理和清洗;2) 利用NumPy进行高效数值计算;3) 通过Matplotlib和Seaborn创建可视化图表;4) 使用Scikit-learn执行机器学习任务;5) 在Jupyter Notebook中进行交互式分析和文档分享。这些技巧能提升数据分析的效率和准确性。
|
5天前
|
数据采集 数据可视化 数据挖掘
Python 与 PySpark数据分析实战指南:解锁数据洞见
Python 与 PySpark数据分析实战指南:解锁数据洞见
|
7天前
|
机器学习/深度学习 运维 算法
Python数据分析中的异常检测与处理方法
在Python数据分析中,异常数据是一个常见但又十分重要的问题。本文将介绍几种常见的异常检测与处理方法,包括基于统计学方法、机器学习方法以及深度学习方法。通过对异常数据的有效检测与处理,可以提高数据分析的准确性和可信度,从而更好地指导业务决策。
|
7天前
|
数据采集 数据可视化 数据挖掘
Python在数据分析中的强大应用
【5月更文挑战第5天】Python在数据驱动时代成为数据分析师首选工具,得益于其丰富的数据科学库(如NumPy、Pandas、Matplotlib、Seaborn和SciPy)。这些库支持数据清洗、探索、建模和可视化。Python在数据清洗、文本分析、Web数据抓取和大数据处理等方面有广泛应用,并因其易学性、强大社区和广泛适用性而备受青睐。未来,Python在数据分析领域的角色将更加重要。
|
12天前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习专栏】金融数据分析中的机器学习应用
【4月更文挑战第30天】本文探讨了机器学习在金融数据分析中的应用,如股价预测、信用评分、欺诈检测、算法交易和风险管理,并以Python为例展示了如何进行股价预测。通过使用机器学习模型,金融机构能更准确地评估风险、识别欺诈行为并优化交易策略。Python结合scikit-learn库简化了数据分析过程,助力金融从业者提高决策效率。随着技术发展,机器学习在金融领域的影响力将持续增强。
|
13天前
|
数据采集 SQL 数据挖掘
Python数据分析中的Pandas库应用指南
在数据科学和分析领域,Python语言已经成为了一种非常流行的工具。本文将介绍Python中的Pandas库,该库提供了强大的数据结构和数据分析工具,使得数据处理变得更加简单高效。通过详细的示例和应用指南,读者将了解到如何使用Pandas库进行数据加载、清洗、转换和分析,从而提升数据处理的效率和准确性。