DIY图像压缩——机器学习实战之K-means 聚类图像压缩:色彩量化

简介: 本文以图像压缩为例,介绍了机器学习的实际应用之一。
更多深度文章,请关注:https://yq.aliyun.com/cloud
作者: ML bot2

这篇文章是K均值聚类算法(K-means clustering)的一个简单应用:压缩图像。

在彩色图像中,每个像素的大小为3字节(RGB),可以表示的颜色总数为256 * 256 * 256。下图为1280 x 720像素的图像,采用PNG格式(一种无损压缩技术),大小为1.71 MB。 我们的目标是使用颜色量化进一步压缩图像,尽管压缩过程会有损失。


K均值聚类

这是一种在给定的数据点集合中找到“K”个簇的优化算法。最初,它随机分配K个簇中心,然后基于一些距离度量(例如,欧几里得距离),使来自簇中心的数据点的距离之和最小化。K均值聚类算法有两个步骤:

a)分配 - 将每个数据点分配给离中心距离最近的簇。

b)更新 - 从指定给新簇的数据点计算新的均值(质心)。

为了描述K均值聚类算法前后的区别,请看下面这个例子(K=3)。


在图像压缩问题中,K均值聚类算法会把类似的颜色分别放在K个簇中——也就是说,每个簇的颜色都变成了一种。因此,我们只需要保留每个像素的标签(表明该像素在哪个簇中),以及每个簇的颜色编码即可完成图像的压缩。


压缩

我们将编写一个简单的python代码来压缩图像,并将压缩图像与代码本(Codebook)一起存储。这里保存的压缩图像只是原始图像的每个像素的簇标签。代码本是在运行K均值算法后实现的簇中心存储列表的别名。簇标签和代码本都保存在数据类型“无符号整数”中。以下为图像压缩代码:

from skimage import io
from sklearn.cluster import KMeans
import numpy as np

image = io.imread('tiger.png')
io.imshow(image)
io.show()

rows = image.shape[0]
cols = image.shape[1]
 
image = image.reshape(image.shape[0]*image.shape[1],3)
kmeans = KMeans(n_clusters = 128, n_init=10, max_iter=200)
kmeans.fit(image)

clusters = np.asarray(kmeans.cluster_centers_,dtype=np.uint8) 
labels = np.asarray(kmeans.labels_,dtype=np.uint8 )  
labels = labels.reshape(rows,cols); 

np.save('codebook_tiger.npy',clusters.imsave('compressed_tiger.png',labels
AI 代码解读
我们可以选择足够大的K来表示图像的颜色。示例中K为128,表明原始图像中的所有颜色组合被量化为128种不同的颜色。这些颜色将会在新图片中呈现(解压缩后),并且应在视觉上类似于原始图像。


解压缩

我们还需要解压缩图像,以便可视化重建的图像。以下为图像解压缩代码:

from skimage import io
import numpy as np

centers = np.load('codebook_tiger.npy_image = io.imread('compressed_tiger.png')

image = np.zeros((c_image.shape[0],c_image.shape[1],3),dtype=np.uint8 )
for i in range(c_image.shape[0]):
    for j in range(c_image.shape[1]):
            image[i,j,:] = centers[c_image[i,j],:]
io.imsave('reconstructed_tiger.png',imageo.imshow(image)
io.show()
AI 代码解读

下图为解压缩后的图像。虽然新图像失去了大量的像素颜色信息,但没有出现任何主要的差异。

此外,您可以通过单独查看码本中的颜色来找到新图像的128种颜色。


注意

1. 如果您尝试按照博客文章中的方式来压缩“jpeg”图像,那么您将会发生错误,因为jpeg会进行有损压缩。 jpeg的压缩算法改变了像素的值,因此包含标签的压缩图像中的像素可能会超过K,从而导致错误。
2. K均值算法是在给定数据集中查找指定数量簇的优化问题。图像尺寸增加或K值增加都会增加执行时间。所以,你可以从较低的K值开始,以便快速获得结果。
3. 在压缩时间和压缩比率之间存在折衷。较高的K值将产生更好的压缩图像质量,但压缩时间也会更长。


结论

您可以在这里查看博客文章中的图像所占用的磁盘空间,如下图所示。原始的png图像是1757 KB(tiger.png),而压缩的虎图像和码本总共只有433 KB。新图像也占用更少的空间:由于只有128种独特的颜色,新的压缩比超过2。

该压缩方法仅仅减少了图像中的颜色数量,又被称为颜色量化(Colour Quantization)。压缩过程中没有减少图像的大小或像素的取值范围。


完整的Python代码可以在 Github中找到,希望你很容易再现本文的例子。如果您喜欢这篇文章,请follow博客以获取文章更新,并请分享这篇文章。请尽管讨论有关该帖子的任何内容,我很乐意收到您的反馈。祝你机器学习愉快!


本文由北邮 @爱可可-爱生活 老师推荐, 阿里云云栖社区组织翻译。
文章原标题《Image Compression using K-means Clustering : Colour Quantization – Machine Learning in Action》,作者: ML bot2,译者:杨辉,审阅:段志成-海棠,附件为原文的pdf。

文章为简译,更为详细的内容,请查看原文

目录
打赏
0
0
0
1
1807
分享
相关文章
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
48 3
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
R1类模型推理能力评测手把手实战
R1类模型推理能力评测手把手实战
基于阿里云 Milvus + DeepSeek + PAI LangStudio 的低成本高精度 RAG 实战
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
232 2
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
282 3
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
262 6
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
217 3

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等