轨迹系统 需求分析与DB设计

本文涉及的产品
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云数据库 Redis 版,社区版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介: 标签 PostgreSQL , PostGIS , 快递 , 包裹侠 , 地理位置 , 距离排序 , KNN 背景 物流行业对地理位置信息数据的处理有非常强烈的需求,例如 1. 实时跟踪快递员、货车的位置信息。

标签

PostgreSQL , PostGIS , 快递 , 包裹侠 , 地理位置 , 距离排序 , KNN


背景

物流行业对地理位置信息数据的处理有非常强烈的需求,例如

1. 实时跟踪快递员、货车的位置信息。对数据库的写入性能要求较高。

2. 对于当日件,需要按发货位置,实时召回附近的快递员。

3. 实时的位置信息非常庞大,为了数据分析的需求,需要保留数据,所以需要廉价的存储。例如对象存储。同时还需要和数据库或分析型的数据库产品实现联动。

阿里云的 PostgreSQL + HybridDB for PostgreSQL + OSS 对象存储可以很好的满足这个需求,详细的方案如下。

业务描述

以物流配送场景为例,介绍阿里云的解决方案。

数据量

快递员:百万级。

快递员的轨迹定位数据间隔:5秒。

一个快递员每天工作时间 7 ~ 19点 (12个小时)。

一个快递员一天产生8640条记录。

所有的快递员,全网一天产生86.4亿条记录。

业务需求

1. 绘制快递员轨迹(实时)

2. 召回快递员(实时)

当天件的需求。

表结构设计

一、轨迹表设计

主表

按快递员ID哈希,128张表。

(如果不分区,单表存储86.4亿记录,问题也不大,只是导出到OSS对象存储的过程可能比较长,如果OSS出现故障,再次导出又要很久)

另一方面的好处是便于扩容。

create table cainiao (  
  uid int,          -- 快递员ID  
  pos point,        -- 快递员位置  
  crt_date date,    -- 日期  
  crt_time time(0)  -- 时间  
);  
  
do language plpgsql $$  
declare  
  sql text;  
begin  
  for i in 0..127  
  loop  
    sql := format( 'create table %I (like cainiao)' , 'cainiao_'||i );  
    execute sql;  
  end loop;  
end;  
$$;  

子表

每天1张子表,轮询使用,覆盖到周(便于维护, 导出到OSS后直接truncate)。一共7张子表。

do language plpgsql $$  
declare  
  sql text;  
begin  
  for i in 0..127  
  loop  
    for x in 0..6  
    loop  
      sql := format( 'create table %I (like cainiao)' , 'cainiao_'||i||'_'||x );  
      execute sql;  
    end loop;  
  end loop;  
end;  
$$;  

历史轨迹存储

OSS对象存储。

阿里云PostgreSQL有oss_ext插件,可以将数据写入oss对象存储。同时也支持从oss对象存储读取数据(外部表的方式),对用户透明。

详见

https://help.aliyun.com/document_detail/44461.html

10.0分区表的例子(可选)

PostgreSQL 10.0 内置了分区表,所以以上分区,可以直接读写主表。

《PostgreSQL 10.0 preview 功能增强 - 内置分区表》

9.5以及以上版本,建议使用pg_pathman插件,一样可以达到分区表的目的。

《PostgreSQL 9.5+ 高效分区表实现 - pg_pathman》

分区表例子

create table cainiao (  
  uid int,   
  pos point,   
  crt_date date,   
  crt_time time(0)  
)   
PARTITION BY RANGE(crt_time);  
  
do language plpgsql $$  
declare  
  sql text;  
begin  
  for i in 0..23  
  loop  
    if i<>23 then  
      sql := format( 'create table %I PARTITION OF cainiao FOR VALUES FROM (%L) TO (%L)' , 'cainiao_'||lpad(i::text, 2, '0') , (lpad(i::text, 2, '0')||':00:00') , (lpad((i+1)::text, 2, '0')||':00:00') );  
    else  
      sql := format( 'create table %I PARTITION OF cainiao FOR VALUES FROM (%L) TO (unbounded)' , 'cainiao_'||lpad(i::text, 2, '0') , (lpad(i::text, 2, '0')||':00:00') );  
    end if;  
    execute sql;  
  end loop;  
end;  
$$;  
  
postgres=# \d+ cainiao  
                                            Table "public.cainiao"  
  Column  |           Type            | Collation | Nullable | Default | Storage | Stats target | Description   
----------+---------------------------+-----------+----------+---------+---------+--------------+-------------  
 uid      | integer                   |           |          |         | plain   |              |   
 pos      | point                     |           |          |         | plain   |              |   
 crt_date | date                      |           |          |         | plain   |              |   
 crt_time | time(0) without time zone |           | not null |         | plain   |              |   
Partition key: RANGE (crt_time)  
Partitions: cainiao_00 FOR VALUES FROM ('00:00:00') TO ('01:00:00'),  
            cainiao_01 FOR VALUES FROM ('01:00:00') TO ('02:00:00'),  
            cainiao_02 FOR VALUES FROM ('02:00:00') TO ('03:00:00'),  
            cainiao_03 FOR VALUES FROM ('03:00:00') TO ('04:00:00'),  
            cainiao_04 FOR VALUES FROM ('04:00:00') TO ('05:00:00'),  
            cainiao_05 FOR VALUES FROM ('05:00:00') TO ('06:00:00'),  
            cainiao_06 FOR VALUES FROM ('06:00:00') TO ('07:00:00'),  
            cainiao_07 FOR VALUES FROM ('07:00:00') TO ('08:00:00'),  
            cainiao_08 FOR VALUES FROM ('08:00:00') TO ('09:00:00'),  
            cainiao_09 FOR VALUES FROM ('09:00:00') TO ('10:00:00'),  
            cainiao_10 FOR VALUES FROM ('10:00:00') TO ('11:00:00'),  
            cainiao_11 FOR VALUES FROM ('11:00:00') TO ('12:00:00'),  
            cainiao_12 FOR VALUES FROM ('12:00:00') TO ('13:00:00'),  
            cainiao_13 FOR VALUES FROM ('13:00:00') TO ('14:00:00'),  
            cainiao_14 FOR VALUES FROM ('14:00:00') TO ('15:00:00'),  
            cainiao_15 FOR VALUES FROM ('15:00:00') TO ('16:00:00'),  
            cainiao_16 FOR VALUES FROM ('16:00:00') TO ('17:00:00'),  
            cainiao_17 FOR VALUES FROM ('17:00:00') TO ('18:00:00'),  
            cainiao_18 FOR VALUES FROM ('18:00:00') TO ('19:00:00'),  
            cainiao_19 FOR VALUES FROM ('19:00:00') TO ('20:00:00'),  
            cainiao_20 FOR VALUES FROM ('20:00:00') TO ('21:00:00'),  
            cainiao_21 FOR VALUES FROM ('21:00:00') TO ('22:00:00'),  
            cainiao_22 FOR VALUES FROM ('22:00:00') TO ('23:00:00'),  
            cainiao_23 FOR VALUES FROM ('23:00:00') TO (UNBOUNDED)  

二、实时位置表

实时位置表,记录快递员的实时位置(最后一条记录的位置)。

由于快递员的位置数据会不停的汇报,因此实时位置表的数据不需要持久化,可以使用unlogged table。

注意

(假如快递员的位置不能实时上报,那么请使用非unlogged table。)

create unlogged table cainiao_trace_realtime (  
  uid int primary key,   -- 快递员ID  
  pos point,             -- 快递员位置  
  crt_date date,         -- 日期  
  crt_time time(0)       -- 时间  
);  

位置字段,创建GIST空间索引。

create index idx_cainiao_trace_realtime_pos on cainiao_trace_realtime using gist (pos);  

实时位置更新逻辑设计

为了实时更新快递员的位置,可以设置一个触发器,在快递员上传实时位置时,自动更新最后的位置。

注意

(如果实时位置表cainiao_trace_realtime使用了非unlogged table,那么考虑到(写入+update)的RT会升高一些,建议不要使用触发器来更新位置。建议程序将 插入和update 作为异步调用进行处理。例如在收到快递员上报的批量位置轨迹后,拆分为batch insert以及update 一次。)

(batch insert: insert into cainiao values (),(),(),....; update 最终状态: update cainiao_trace_realtime set xx=xx where uid=xx;)(好处:1. 插入和更新异步, 2. 插入批量执行, 3. 整体rt更低)

jdbc batch参考: 《PostgreSQL jdbc batch insert》

create or replace function ins_cainiao() returns trigger as $$  
declare  
begin  
  insert into cainiao_trace_realtime(uid,pos,crt_date,crt_time)   
    values (NEW.uid, NEW.pos, NEW.crt_date, NEW.crt_time)   
    on conflict (uid) do update set pos=excluded.pos,crt_date=excluded.crt_date,crt_time=excluded.crt_time;   
  return null;  
end;  
$$ language plpgsql strict;  

对基表添加触发器

do language plpgsql $$  
declare  
  sql text;  
begin  
  for i in 0..127  
  loop  
    for x in 0..6  
    loop  
      sql := format( 'create trigger tg after insert on %I for each row execute procedure ins_cainiao()', 'cainiao_'||i||'_'||x );  
      execute sql;  
    end loop;  
  end loop;  
end;  
$$;  

触发器示例如下

postgres=# \d+ cainiao_0_0  
                                          Table "public.cainiao_0_0"  
  Column  |           Type            | Collation | Nullable | Default | Storage | Stats target | Description   
----------+---------------------------+-----------+----------+---------+---------+--------------+-------------  
 uid      | integer                   |           |          |         | plain   |              |   
 pos      | point                     |           |          |         | plain   |              |   
 crt_date | date                      |           |          |         | plain   |              |   
 crt_time | time(0) without time zone |           |          |         | plain   |              |   
Triggers:  
    tg AFTER INSERT ON cainiao_0_0 FOR EACH ROW EXECUTE PROCEDURE ins_cainiao()  

性能测试

说明

1. 本文假设应用程序会根据 快递员UID ,时间字段 拼接出基表的表名。

否则就需要使用PostgreSQL的分区表功能(分区表的性能比直接操作基表差一些)。

2. 本文使用point代替经纬度,因为point比较好造数据,方便测试。

实际上point和经纬度都是地理位置类型,可以实现的场景类似。性能指标也可以用于参考。

1 实时轨迹测试

模拟快递员实时的上传轨迹,实时的更新快递员的最新位置。

pgbench的测试脚本如下

vi test.sql  
  
\set uid random(1,1000000)  
\set x random(-500000,500000)  
\set y random(-500000,500000)  
insert into cainiao_0_2 values (:uid, point(:x,:y), now()::date, now()::time);  

开始测试,持续300秒。

numactl --physcpubind=0-31 pgbench -M prepared -n -r -P 1 -f ./test.sql -c 32 -j 32 -T 300  

测试结果

每秒写入17.4万,单次请求延迟0.18毫秒。

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 32  
number of threads: 32  
duration: 300 s  
number of transactions actually processed: 52270642  
latency average = 0.184 ms  
latency stddev = 2.732 ms  
tps = 174234.709260 (including connections establishing)  
tps = 174236.529998 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.001  \set uid random(1,1000000)  
         0.000  \set x random(-500000,500000)  
         0.000  \set y random(-500000,500000)  
         0.182  insert into cainiao_0_2 values (:uid, point(:x,:y), now()::date, now()::time);  

2 召回快递员测试

比如当日件达到一定数量、或者到达一定时间点时,需要召回附近的快递员取件。

或者当用户寄当日件时,需要召回附近的快递员取件。

压测用例

随机选择一个点,召回半径为20000范围内,距离最近的100名快递员。

SQL样例

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from cainiao_trace_realtime where circle '((0,0),20000)' @> pos order by pos <-> point '(0,0)' limit 100;  
                                                                                 QUERY PLAN                                                                                    
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=0.41..112.45 rows=100 width=40) (actual time=0.096..0.342 rows=100 loops=1)  
   Output: uid, pos, crt_date, crt_time, ((pos <-> '(0,0)'::point))  
   Buffers: shared hit=126  
   ->  Index Scan using idx_cainiao_trace_realtime_pos on public.cainiao_trace_realtime  (cost=0.41..1167.86 rows=1042 width=40) (actual time=0.094..0.330 rows=100 loops=1)  
         Output: uid, pos, crt_date, crt_time, (pos <-> '(0,0)'::point)  
         Index Cond: ('<(0,0),20000>'::circle @> cainiao_trace_realtime.pos)  
         Order By: (cainiao_trace_realtime.pos <-> '(0,0)'::point)  
         Buffers: shared hit=126  
 Planning time: 0.098 ms  
 Execution time: 0.377 ms  
(10 rows)  

pgbench的测试脚本如下

vi test1.sql  
  
\set x random(-500000,500000)  
\set y random(-500000,500000)  
select * from cainiao_trace_realtime where circle(point(:x,:y),20000) @> pos order by pos <-> point(:x,:y) limit 100;  

开始测试,持续300秒。

numactl --physcpubind=32-63 pgbench -M prepared -n -r -P 1 -f ./test1.sql -c 32 -j 32 -T 300  

测试结果

每秒处理召回请求 6万,单次请求延迟0.53毫秒。

transaction type: ./test1.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 32  
number of threads: 32  
duration: 300 s  
number of transactions actually processed: 18087765  
latency average = 0.531 ms  
latency stddev = 0.103 ms  
tps = 60292.169523 (including connections establishing)  
tps = 60292.786291 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.001  \set x random(-500000,500000)  
         0.000  \set y random(-500000,500000)  
         0.529  select * from cainiao_trace_realtime where circle(point(:x,:y),20000) @> pos order by pos <-> point(:x,:y) limit 100;  

备注,如果只召回一名快递员,可以达到28万 tps.

transaction type: ./test1.sql
scaling factor: 1
query mode: prepared
number of clients: 32
number of threads: 32
duration: 300 s
number of transactions actually processed: 84257925
latency average = 0.114 ms
latency stddev = 0.033 ms
tps = 280858.872643 (including connections establishing)
tps = 280862.101773 (excluding connections establishing)
script statistics:
 - statement latencies in milliseconds:
         0.001  \set x random(-500000,500000)
         0.000  \set y random(-500000,500000)
         0.112  select * from cainiao_trace_realtime where circle(point(:x,:y),20000) @> pos order by pos <-> point(:x,:y) limit 1;

3 混合测试

同时压测快递员轨迹插入、随机召回快递员。

压测结果

插入TPS: 12.5万,响应时间0.25毫秒

查询TPS: 2.17万,响应时间1.47毫秒

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 32  
number of threads: 32  
duration: 100 s  
number of transactions actually processed: 12508112  
latency average = 0.256 ms  
latency stddev = 1.266 ms  
tps = 125072.868788 (including connections establishing)  
tps = 125080.518685 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set uid random(1,1000000)  
         0.001  \set x random(-500000,500000)  
         0.000  \set y random(-500000,500000)  
         0.253  insert into cainiao_16 values (:uid, point(:x,:y), now()::date, now()::time);  
  
transaction type: ./test1.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 32  
number of threads: 32  
duration: 100 s  
number of transactions actually processed: 2174422  
latency average = 1.472 ms  
latency stddev = 0.455 ms  
tps = 21743.641754 (including connections establishing)  
tps = 21744.366018 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set x random(-500000,500000)  
         0.000  \set y random(-500000,500000)  
         1.469  select * from cainiao_trace_realtime where circle(point(:x,:y),20000) @> pos order by pos <-> point(:x,:y) limit 100;  

快递员实时位置表剥离

如果要尽量的降低RT,快递员实时位置表可以与轨迹明细表剥离,由应用程序来更新快递员的实时位置。

至于这个实时位置表,你要把它放在明细表的数据库,还是另外一个数据库?

我的建议是放在另外一个数据库,因为这种表的应用非常的独立(更新,查询),都是小事务。

而明细轨迹,可能涉及到比较大的查询,以插入,范围分析,数据合并,日轨迹查询为主。

将明细和实时轨迹独立开来,也是有原因的。

剥离后,明细位置你可以继续使用UNLOGGED TABLE,也可以使用普通表。

下面测试一下剥离后的性能。

pgbench脚本,更新快递员位置,查询某个随机点的最近100个快递员。

postgres=# \d cainiao_trace_realtime
                 Table "public.cainiao_trace_realtime"
  Column  |           Type            | Collation | Nullable | Default 
----------+---------------------------+-----------+----------+---------
 uid      | integer                   |           | not null | 
 pos      | point                     |           |          | 
 crt_date | date                      |           |          | 
 crt_time | time(0) without time zone |           |          | 
Indexes:
    "cainiao_trace_realtime_pkey" PRIMARY KEY, btree (uid)
    "idx_cainiao_trace_realtime_pos" gist (pos)

postgres=# select count(*),min(uid),max(uid) from cainiao_trace_realtime ;
  count  | min |   max   
---------+-----+---------
 1000000 |   1 | 1000000
(1 row)


vi test1.sql
\set uid 1 1000000
\set x random(-500000,500000)
\set y random(-500000,500000)
insert into cainiao_trace_realtime (uid,pos) values (:uid, point(:x,:y)) on conflict (uid) do update set pos=excluded.pos; 


vi test2.sql
\set x random(-500000,500000)
\set y random(-500000,500000)
select * from cainiao_trace_realtime where circle(point(:x,:y),20000) @> pos order by pos <-> point(:x,:y) limit 100;

压测结果1(更新 18万/s, 响应时间0.17毫秒)

numactl --physcpubind=0-31 pgbench -M prepared -n -r -P 1 -f ./test1.sql -c 32 -j 32 -T 300

transaction type: ./test1.sql
scaling factor: 1
query mode: prepared
number of clients: 32
number of threads: 32
duration: 300 s
number of transactions actually processed: 54283976
latency average = 0.177 ms
latency stddev = 2.241 ms
tps = 180943.029385 (including connections establishing)
tps = 180945.072949 (excluding connections establishing)
script statistics:
 - statement latencies in milliseconds:
         0.001  \set uid random(1,1000000)
         0.001  \set x random(-500000,500000)
         0.000  \set y random(-500000,500000)
         0.175  insert into cainiao_trace_realtime (uid,pos) values (:uid, point(:x,:y)) on conflict (uid) do update set pos=excluded.pos;

压测结果2(查询 5.2万/s, 响应时间0.61毫秒)

numactl --physcpubind=0-31 pgbench -M prepared -n -r -P 1 -f ./test2.sql -c 32 -j 32 -T 100

transaction type: ./test2.sql
scaling factor: 1
query mode: prepared
number of clients: 32
number of threads: 32
duration: 100 s
number of transactions actually processed: 5195710
latency average = 0.616 ms
latency stddev = 0.154 ms
tps = 51956.132043 (including connections establishing)
tps = 51957.754525 (excluding connections establishing)
script statistics:
 - statement latencies in milliseconds:
         0.001  \set x random(-500000,500000)
         0.000  \set y random(-500000,500000)
         0.614  select * from cainiao_trace_realtime where circle(point(:x,:y),20000) @> pos order by pos <-> point(:x,:y) limit 100;

压测结果3(更新13万/s, 响应时间0.24毫秒 + 查询1.8万/s, 响应时间1.78毫秒)

numactl --physcpubind=0-31 pgbench -M prepared -n -r -P 1 -f ./test1.sql -c 32 -j 32 -T 100
transaction type: ./test1.sql
scaling factor: 1
query mode: prepared
number of clients: 32
number of threads: 32
duration: 100 s
number of transactions actually processed: 13057629
latency average = 0.245 ms
latency stddev = 0.805 ms
tps = 130575.023251 (including connections establishing)
tps = 130582.436319 (excluding connections establishing)
script statistics:
 - statement latencies in milliseconds:
         0.002  \set uid random(1,1000000)
         0.001  \set x random(-500000,500000)
         0.000  \set y random(-500000,500000)
         0.242  insert into cainiao_trace_realtime (uid,pos) values (:uid, point(:x,:y)) on conflict (uid) do update set pos=excluded.pos;

numactl --physcpubind=32-63 pgbench -M prepared -n -r -P 1 -f ./test2.sql -c 32 -j 32 -T 100
transaction type: ./test2.sql
scaling factor: 1
query mode: prepared
number of clients: 32
number of threads: 32
duration: 100 s
number of transactions actually processed: 1791580
latency average = 1.786 ms
latency stddev = 2.128 ms
tps = 17915.362549 (including connections establishing)
tps = 17916.037454 (excluding connections establishing)
script statistics:
 - statement latencies in milliseconds:
         0.002  \set x random(-500000,500000)
         0.000  \set y random(-500000,500000)
         1.784  select * from cainiao_trace_realtime where circle(point(:x,:y),20000) @> pos order by pos <-> point(:x,:y) limit 100;

历史轨迹进入OSS对象存储

前面对实时轨迹数据使用一周的分表,目的就是有时间可以将其写入到OSS,方便维护。

每天可以将6天前的数据,写入OSS对象存储。

OSS对象存储。

阿里云PostgreSQL有oss_ext插件,可以将数据写入oss对象存储。同时也支持从oss对象存储读取数据(外部表的方式),对用户透明。

详见

https://help.aliyun.com/document_detail/44461.html

其他需求,轨迹合并设计

单个快递员,一天产生的轨迹是8640条。

PostgreSQL支持JSON、HSTORE(kv)、数组、复合数组 类型。每天将单个快递员的轨迹聚合为一条记录,可以大幅度提升按快递员查询轨迹的速度。

同样的场景可以参考:

《performance tuning about multi-rows query aggregated to single-row query》

聚合例子

create type trace as (pos point, crt_time time);  
  
create table cainiao_trace_agg (crt_date date, uid int, trace_arr trace[], primary key(crt_date,uid));  
  
insert into cainiao_trace_agg (crt_date , uid , trace_arr )   
select crt_date, uid, array_agg( (pos,crt_time)::trace ) from cainiao_0_2 group by crt_date, uid;  

查询某个快递员1天的轨迹,性能提升对比

聚合前(b-tree索引),耗时8毫秒

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from cainiao_0_2 where uid=340054;  
                                                           QUERY PLAN                                                             
--------------------------------------------------------------------------------------------------------------------------------  
 Index Scan using idx on public.cainiao_0_2  (cost=0.57..193.61 rows=194 width=32) (actual time=0.033..7.711 rows=7904 loops=1)  
   Output: uid, pos, crt_date, crt_time  
   Index Cond: (cainiao_0_2.uid = 340054)  
   Buffers: shared hit=7720  
 Planning time: 0.090 ms  
 Execution time: 8.198 ms  
(6 rows)  

聚合后,耗时0.033毫秒

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from cainiao_trace_agg where crt_date='2017-04-18' and uid=340054;  
                                                                    QUERY PLAN                                                                       
---------------------------------------------------------------------------------------------------------------------------------------------------  
 Index Scan using cainiao_trace_agg_pkey on public.cainiao_trace_agg  (cost=0.42..2.44 rows=1 width=978) (actual time=0.016..0.017 rows=1 loops=1)  
   Output: crt_date, uid, trace_arr  
   Index Cond: ((cainiao_trace_agg.crt_date = '2017-04-18'::date) AND (cainiao_trace_agg.uid = 340054))  
   Buffers: shared hit=4  
 Planning time: 0.098 ms  
 Execution time: 0.033 ms  
(6 rows)  

小结

1. 本文以物流轨迹系统为背景,对两个常见需求进行数据库的设计以及模型的压测:实时跟踪快递员轨迹,实时召回附近的快递员。

2. PostgreSQL 结合 OSS,实现了数据的冷热分离,历史轨迹写入OSS保存,再通过OSS可以共享给HybridDB for PostgreSQL,进行实时的数据挖掘分析。

3. 单机满足了每秒18万的轨迹写入,按最近距离召回快递员(100名快递员)可以达到6万/s的速度,按最近距离召回快递员(1名快递员)可以达到28万/s的速度。

4. 使用PostgreSQL的继承特性,可以更好的管理分区表,例如要查询礼拜一的所有分区,查询这些分区的主表。 如果要查某个模值的所有时间段数据,查询对应的主表即可。

参考

《PostGIS long lat geometry distance search tuning using gist knn function》

《PostgreSQL 百亿地理位置数据 近邻查询性能》

《ApsaraDB的左右互搏(PgSQL+HybridDB+OSS) - 解决OLTP+OLAP混合需求》

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
相关文章
|
1月前
|
SQL NoSQL 前端开发
基于BS架构的饰品购物平台设计与实现(程序+文档+数据库)
基于BS架构的饰品购物平台设计与实现(程序+文档+数据库)
|
4天前
|
存储 Oracle 数据管理
Oracle 12c的自动数据优化(ADO)与热图:数据管理的“瘦身”与“透视”艺术
【4月更文挑战第19天】Oracle 12c的ADO和热图技术革新数据管理。ADO智能清理无用数据,优化存储,提升查询速度,实现数据&quot;瘦身&quot;;热图则以直观的视觉表示展示数据分布和状态,助力识别性能瓶颈,犹如数据的&quot;透视&quot;工具。这两项技术结合,强化数据管理,为企业业务发展保驾护航。
|
9月前
|
数据库
学生信息管理系统----实时错误’-2147217887‘多步OLB DB 操作产生错误。如果可能,请检查OLE
学生信息管理系统----实时错误’-2147217887‘多步OLB DB 操作产生错误。如果可能,请检查OLE
45 0
|
SQL 关系型数据库 数据库
|
关系型数据库 数据库
《高级进阶DB2(第2版)——内部结构、高级管理与问题诊断》之我见
《高级进阶DB2(第2版)——内部结构、高级管理与问题诊断》之我见   从IT开发与运维角度来分析,千千万万的业务应用系统,最核心的最有价值的是业务数据;而这些多年来积累与沉淀下来的数据依托于数据库系统,数据库系统是否稳定与性能高低则是考验数据库内核,而作为核心之重的数据库内核则是各种商用与开源数据库服务器软件实现与关注的重点所在。   从数据库服务器软件的市场来看,DB2所占据的地位与份额真
1880 0