K8S从懵圈到熟练 - 节点下线姊妹篇

简介: 之前分享过一例集群节点NotReady的问题。在那个问题中,我们的排查路劲,从K8S集群到容器运行时,再到sdbus和systemd,不可谓不复杂。那个问题目前已经在systemd中做了修复,所以基本上能看到那个问题的几率是越来越低了。

之前分享过一例集群节点NotReady的问题。在那个问题中,我们的排查路劲,从K8S集群到容器运行时,再到sdbus和systemd,不可谓不复杂。那个问题目前已经在systemd中做了修复,所以基本上能看到那个问题的几率是越来越低了。

但是,集群节点就绪问题还是有的,然而原因却有所不同。

今天这篇文章,跟大家分享另外一例集群节点NotReady的问题。这个问题和之前那个问题相比,排查路劲完全不同。作为姊妹篇分享给大家。

问题现象

这个问题的现象,也是集群节点会变成NotReady状态。问题可以通过重启节点暂时解决,但是在经过大概20天左右之后,问题会再次出现。

333

问题出现之后,如果我们重启节点上kubelet,则节点会变成Ready状态,但这种状态只会持续三分钟。这是一个特别的情况。

大逻辑

在具体分析这个问题之前,我们先来看一下集群节点就绪状态背后的大逻辑。K8S集群中,与节点就绪状态有关的组件,主要有四个,分别是集群的核心数据库etcd,集群的入口API Server,节点控制器以及驻守在集群节点上,直接管理节点的kubelet。

111

一方面,kubelet扮演的是集群控制器的角色,它定期从API Server获取Pod等相关资源的信息,并依照这些信息,控制运行在节点上Pod的执行;另外一方面,kubelet作为节点状况的监视器,它获取节点信息,并以集群客户端的角色,把这些状况同步到API Server。

在这个问题中,kubelet扮演的是第二种角色。

Kubelet会使用上图中的NodeStatus机制,定期检查集群节点状况,并把节点状况同步到API Server。而NodeStatus判断节点就绪状况的一个主要依据,就是PLEG。

PLEG是Pod Lifecycle Events Generator的缩写,基本上它的执行逻辑,是定期检查节点上Pod运行情况,如果发现感兴趣的变化,PLEG就会把这种变化包装成Event发送给Kubelet的主同步机制syncLoop去处理。但是,在PLEG的Pod检查机制不能定期执行的时候,NodeStatus机制就会认为,这个节点的状况是不对的,从而把这种状况同步到API Server。

而最终把kubelet上报的节点状况,落实到节点状态的是节点控制这个组件。这里我故意区分了kubelet上报的节点状况,和节点的最终状态。因为前者,其实是我们describe node时看到的Condition,而后者是真正节点列表里的NotReady状态。

222

就绪三分钟

在问题发生之后,我们重启kubelet,节点三分钟之后才会变成NotReady状态。这个现象是问题的一个关键切入点。

81172457cbfd560dafb029cb277db88f

在解释它之前,请大家看一下官方这张PLEG示意图。这个图片主要展示了两个过程。一方面,kubelet作为集群控制器,从API Server处获取pod spec changes,然后通过创建worker线程来创建或结束掉pod;另外一方面,PLEG定期检查容器状态,然后把状态,以事件的形式反馈给kubelet。

在这里,PLEG有两个关键的时间参数,一个是检查的执行间隔,另外一个是检查的超时时间。以默认情况为准,PLEG检查会间隔一秒,换句话说,每一次检查过程执行之后,PLEG会等待一秒钟,然后进行下一次检查;而每一次检查的超时时间是三分钟,如果一次PLEG检查操作不能在三分钟内完成,那么这个状况,会被上一节提到的NodeStatus机制,当做集群节点NotReady的凭据,同步给API Server。

而我们之所以观察到节点会在重启kubelet之后就绪三分钟,是因为kubelet重启之后,第一次PLEG检查操作就没有顺利结束。节点就绪状态,直到三分钟超时之后,才被同步到集群。

如下图,上边一行表示正常情况下PLEG的执行流程,下边一行则表示有问题的情况。relist是检查的主函数。

Untitled_Diagram_2019_09_09T130328_891

止步不前的PLEG

了解了原理,我们来看一下PLEG的日志。日志基本上可以分为两部分,其中skipping pod synchronization这部分是kubelet同步函数syncLoop输出的,说明它跳过了一次pod同步;而剩余PLEG is not healthy: pleg was last seen active ago; threshold is 3m0s,则很清楚的展现了,上一节提到的relist超时三分钟的问题。

17:08:22.299597 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m0.000091019s ago; threshold is 3m0s]
17:08:22.399758 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m0.100259802s ago; threshold is 3m0s]
17:08:22.599931 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m0.300436887s ago; threshold is 3m0s]
17:08:23.000087 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m0.700575691s ago; threshold is 3m0s]
17:08:23.800258 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m1.500754856s ago; threshold is 3m0s]
17:08:25.400439 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m3.100936232s ago; threshold is 3m0s]
17:08:28.600599 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m6.301098811s ago; threshold is 3m0s]
17:08:33.600812 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m11.30128783s ago; threshold is 3m0s]
17:08:38.600983 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m16.301473637s ago; threshold is 3m0s]
17:08:43.601157 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m21.301651575s ago; threshold is 3m0s]
17:08:48.601331 kubelet skipping pod synchronization - [PLEG is not healthy: pleg was last seen active 3m26.301826001s ago; threshold is 3m0s]

能直接看到relist函数执行情况的,是kubelet的调用栈。我们只要向kubelet进程发送SIGABRT信号,golang运行时就会帮我们输出kubelet进程的所有调用栈。需要注意的是,这个操作会杀死kubelet进程。但是因为这个问题中,重启kubelet并不会破坏重现环境,所以影响不大。

以下调用栈是PLEG relist函数的调用栈。从下往上,我们可以看到,relist等在通过grpc获取PodSandboxStatus。

kubelet: k8s.io/kubernetes/vendor/google.golang.org/grpc/transport.(*Stream).Header()
kubelet: k8s.io/kubernetes/vendor/google.golang.org/grpc.recvResponse()
kubelet: k8s.io/kubernetes/vendor/google.golang.org/grpc.invoke()
kubelet: k8s.io/kubernetes/vendor/google.golang.org/grpc.Invoke()
kubelet: k8s.io/kubernetes/pkg/kubelet/apis/cri/runtime/v1alpha2.(*runtimeServiceClient).PodSandboxStatus()
kubelet: k8s.io/kubernetes/pkg/kubelet/remote.(*RemoteRuntimeService).PodSandboxStatus()
kubelet: k8s.io/kubernetes/pkg/kubelet/kuberuntime.instrumentedRuntimeService.PodSandboxStatus()
kubelet: k8s.io/kubernetes/pkg/kubelet/kuberuntime.(*kubeGenericRuntimeManager).GetPodStatus()
kubelet: k8s.io/kubernetes/pkg/kubelet/pleg.(*GenericPLEG).updateCache()
kubelet: k8s.io/kubernetes/pkg/kubelet/pleg.(*GenericPLEG).relist()
kubelet: k8s.io/kubernetes/pkg/kubelet/pleg.(*GenericPLEG).(k8s.io/kubernetes/pkg/kubelet/pleg.relist)-fm()
kubelet: k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/util/wait.JitterUntil.func1(0xc420309260)
kubelet: k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/util/wait.JitterUntil()
kubelet: k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/util/wait.Until()

使用PodSandboxStatus搜索kubelet调用栈,很容易找到下边这个线程,此线程是真正查询Sandbox状态的线程,从下往上看,我们会发现这个线程在Plugin Manager里尝试去拿一个Mutex。

kubelet: sync.runtime_SemacquireMutex()kubelet: sync.(*Mutex).Lock()
kubelet: k8s.io/kubernetes/pkg/kubelet/dockershim/network.(*PluginManager).GetPodNetworkStatus()
kubelet: k8s.io/kubernetes/pkg/kubelet/dockershim.(*dockerService).getIPFromPlugin()
kubelet: k8s.io/kubernetes/pkg/kubelet/dockershim.(*dockerService).getIP()
kubelet: k8s.io/kubernetes/pkg/kubelet/dockershim.(*dockerService).PodSandboxStatus()
kubelet: k8s.io/kubernetes/pkg/kubelet/apis/cri/runtime/v1alpha2._RuntimeService_PodSandboxStatus_Handler()
kubelet: k8s.io/kubernetes/vendor/google.golang.org/grpc.(*Server).processUnaryRPC()
kubelet: k8s.io/kubernetes/vendor/google.golang.org/grpc.(*Server).handleStream()
kubelet: k8s.io/kubernetes/vendor/google.golang.org/grpc.(*Server).serveStreams.func1.1()
kubelet: created by k8s.io/kubernetes/vendor/google.golang.org/grpc.(*Server).serveStreams.func1

而这个Mutex只有在Plugin Manager里边有用到,所以我们查看所有Plugin Manager相关的调用栈。线程中一部分在等Mutex,而剩余的都是在等Terway cni plugin。

kubelet: syscall.Syscall6()kubelet: os.(*Process).blockUntilWaitable()
kubelet: os.(*Process).wait()kubelet: os.(*Process).Wait()
kubelet: os/exec.(*Cmd).Wait()kubelet: os/exec.(*Cmd).Run()
kubelet: k8s.io/kubernetes/vendor/github.com/containernetworking/cni/pkg/invoke.(*RawExec).ExecPlugin()
kubelet: k8s.io/kubernetes/vendor/github.com/containernetworking/cni/pkg/invoke.(*PluginExec).WithResult()
kubelet: k8s.io/kubernetes/vendor/github.com/containernetworking/cni/pkg/invoke.ExecPluginWithResult()
kubelet: k8s.io/kubernetes/vendor/github.com/containernetworking/cni/libcni.(*CNIConfig).AddNetworkList()
kubelet: k8s.io/kubernetes/pkg/kubelet/dockershim/network/cni.(*cniNetworkPlugin).addToNetwork()
kubelet: k8s.io/kubernetes/pkg/kubelet/dockershim/network/cni.(*cniNetworkPlugin).SetUpPod()
kubelet: k8s.io/kubernetes/pkg/kubelet/dockershim/network.(*PluginManager).SetUpPod()
kubelet: k8s.io/kubernetes/pkg/kubelet/dockershim.(*dockerService).RunPodSandbox()
kubelet: k8s.io/kubernetes/pkg/kubelet/apis/cri/runtime/v1alpha2._RuntimeService_RunPodSandbox_Handler()
kubelet: k8s.io/kubernetes/vendor/google.golang.org/grpc.(*Server).processUnaryRPC()
kubelet: k8s.io/kubernetes/vendor/google.golang.org/grpc.(*Server).handleStream()
kubelet: k8s.io/kubernetes/vendor/google.golang.org/grpc.(*Server).serveStreams.func1.1()

无响应的Terwayd

在进一步解释这个问题之前,我们需要区分下Terway和Terwayd。本质上来说,Terway和Terwayd是客户端服务器的关系,这跟flannel和flanneld之间的关系是一样的。Terway是按照kubelet的定义,实现了cni接口的插件。

terway_deploy_diagram

而在上一节最后,我们看到的问题,是kubelet调用CNI terway去配置pod网络的时候,Terway长时间无响应。正常情况下这个操作应该是秒级的,非常快速。而出问题的时候,Terway没有正常完成任务,因而我们在集群节点上看到大量terway进程堆积。

4444

同样的,我们可以发送SIGABRT给这些terway插件进程,来打印出进程的调用栈。下边是其中一个terway的调用栈。这个线程在执行cmdDel函数,其作用是删除一个pod网络相关配置。

kubelet: net/rpc.(*Client).Call()
kubelet: main.rpcCall()kubelet: main.cmdDel()
kubelet: github.com/AliyunContainerService/terway/vendor/github.com/containernetworking/cni/pkg/skel.(*dispatcher).checkVersionAndCall()
kubelet: github.com/AliyunContainerService/terway/vendor/github.com/containernetworking/cni/pkg/skel.(*dispatcher).pluginMain()
kubelet: github.com/AliyunContainerService/terway/vendor/github.com/containernetworking/cni/pkg/skel.PluginMainWithError()
kubelet: github.com/AliyunContainerService/terway/vendor/github.com/containernetworking/cni/pkg/skel.PluginMain()

以上线程通过rpc调用terwayd,来真正的移除pod网络。所以我们需要进一步排查terwayd的调用栈来进一步定位此问题。Terwayd作为Terway的服务器端,其接受Terway的远程调用,并替Terway完成其cmdAdd或者cmdDel来创建或者移除pod网络配置。

我们在上边的截图里可以看到,集群节点上有成千Terway进程,他们都在等待Terwayd,所以实际上Terwayd里,也有成千的线程在处理Terway的请求。

使用下边的命令,可以在不重启Terwayd的情况下,输出调用栈。

curl  --unix-socket /var/run/eni/eni.socket 'http:/debug/pprof/goroutine?debug=2'

因为Terwayd的调用栈非常复杂,而且几乎所有的线程都在等锁,直接去分析锁的等待持有关系比较复杂。这个时候我们可以使用“时间大法”,即假设最早进入等待状态的线程,大概率是持有锁的线程。

经过调用栈和代码分析,我们发现下边这个是等待时间最长(1595分钟),且拿了锁的线程。而这个锁会block所有创建或者销毁pod网络的线程。

goroutine 67570 [syscall, 1595 minutes, locked to thread]:
syscall.Syscall6()
github.com/AliyunContainerService/terway/vendor/golang.org/x/sys/unix.recvfrom()
github.com/AliyunContainerService/terway/vendor/golang.org/x/sys/unix.Recvfrom()
github.com/AliyunContainerService/terway/vendor/github.com/vishvananda/netlink/nl.(*NetlinkSocket).Receive()
github.com/AliyunContainerService/terway/vendor/github.com/vishvananda/netlink/nl.(*NetlinkRequest).Execute()
github.com/AliyunContainerService/terway/vendor/github.com/vishvananda/netlink.(*Handle).LinkSetNsFd()
github.com/AliyunContainerService/terway/vendor/github.com/vishvananda/netlink.LinkSetNsFd()
github.com/AliyunContainerService/terway/daemon.SetupVethPair()github.com/AliyunContainerService/terway/daemon.setupContainerVeth.func1()
github.com/AliyunContainerService/terway/vendor/github.com/containernetworking/plugins/pkg/ns.(*netNS).Do.func1()
github.com/AliyunContainerService/terway/vendor/github.com/containernetworking/plugins/pkg/ns.(*netNS).Do.func2()

原因深入分析前一个线程的调用栈,我们可以确定三件事情。第一,Terwayd使用了netlink这个库来管理节点上的虚拟网卡,IP地址及路由等资源,且netlink实现了类似iproute2的功能;第二,netlink使用socket直接和内核通信;第三,以上线程等在recvfrom系统调用上。

这样的情况下,我们需要去查看这个线程的内核调用栈,才能进一步确认这个线程等待的原因。因为从goroutine线程号比较不容易找到这个线程的系统线程id,这里我们通过抓取系统的core dump来找出上边线程的内核调用栈。

在内核调用栈中,搜索recvfrom,定位到下边这个线程。基本上从下边的调用栈上,我们只能确定,此线程等在recvfrom函数上。

PID: 19246  TASK: ffff880951f70fd0  CPU: 16  COMMAND: "terwayd" 
#0 [ffff880826267a40] __schedule at ffffffff816a8f65 
#1 [ffff880826267aa8] schedule at ffffffff816a94e9 
#2 [ffff880826267ab8] schedule_timeout at ffffffff816a6ff9 
#3 [ffff880826267b68] __skb_wait_for_more_packets at ffffffff81578f80 
#4 [ffff880826267bd0] __skb_recv_datagram at ffffffff8157935f 
#5 [ffff880826267c38] skb_recv_datagram at ffffffff81579403 
#6 [ffff880826267c58] netlink_recvmsg at ffffffff815bb312 
#7 [ffff880826267ce8] sock_recvmsg at ffffffff8156a88f 
#8 [ffff880826267e58] SYSC_recvfrom at ffffffff8156aa08 
#9 [ffff880826267f70] sys_recvfrom at ffffffff8156b2fe
#10 [ffff880826267f80] tracesys at ffffffff816b5212 
(via system_call)

这个问题进一步深入排查,是比较困难的,这显然是一个内核问题,或者内核相关的问题。我们翻遍了整个内核core,检查了所有的线程调用栈,看不到其他可能与这个问题相关联的线程。

修复

这个问题的修复基于一个假设,就是netlink并不是100%可靠的。netlink可以响应很慢,甚至完全没有响应。所以我们可以给netlink操作增加超时,从而保证就算某一次netlink调用不能完成的情况下,terwayd也不会被阻塞。

总结

在节点就绪状态这种场景下,kubelet实际上实现了节点的心跳机制。kubelet会定期把节点相关的各种状态,包括内存,PID,磁盘,当然包括这个文章中关注的就绪状态等,同步到集群管控。kubelet在监控或者管理集群节点的过程中,使用了各种插件来直接操作节点资源。这包括网络,磁盘,甚至容器运行时等插件,这些插件的状况,会直接应用kubelet甚至节点的状态。

相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
云原生实践公开课
课程大纲 开篇:如何学习并实践云原生技术 基础篇: 5 步上手 Kubernetes 进阶篇:生产环境下的 K8s 实践 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
2月前
|
NoSQL 测试技术 Redis
六步操作教你轻松搭建Redis集群
Redis 是我们目前大规模使用的缓存中间件,由于它强大高效而又便捷的功能,得到了广泛的使用。单节点的Redis已经就达到了很高的性能,为了提高可用性我们可以使用Redis集群。本文参考了Rdis的官方文档和使用Redis官方提供的Redis Cluster工具搭建Rdis集群。
40 0
|
4月前
节点退役失败案例
节点退役失败案例
17 0
|
Kubernetes Cloud Native API
【云原生Kubernetes系列第五篇】kubeadm v1.20 部署K8S 集群架构(人生这道选择题,总会有遗憾)(二)
【云原生Kubernetes系列第五篇】kubeadm v1.20 部署K8S 集群架构(人生这道选择题,总会有遗憾)(二)
253 0
【云原生Kubernetes系列第五篇】kubeadm v1.20 部署K8S 集群架构(人生这道选择题,总会有遗憾)(二)
|
Kubernetes Cloud Native 数据可视化
【云原生Kubernetes系列第五篇】kubeadm v1.20 部署K8S 集群架构(人生这道选择题,总会有遗憾)(一)
【云原生Kubernetes系列第五篇】kubeadm v1.20 部署K8S 集群架构(人生这道选择题,总会有遗憾)(一)
155 0
【云原生Kubernetes系列第五篇】kubeadm v1.20 部署K8S 集群架构(人生这道选择题,总会有遗憾)(一)
|
Kubernetes Cloud Native Docker
【云原生Kubernetes系列第五篇】kubeadm v1.20 部署K8S 集群架构(人生这道选择题,总会有遗憾)(三)
【云原生Kubernetes系列第五篇】kubeadm v1.20 部署K8S 集群架构(人生这道选择题,总会有遗憾)(三)
156 0
【云原生Kubernetes系列第五篇】kubeadm v1.20 部署K8S 集群架构(人生这道选择题,总会有遗憾)(三)
|
SQL 缓存 安全
如何做好大促时的系统高可用
面对大促不确定的流量,我们需要做好全方位的流量控制与防护能力,确保我们的系统始终工作在预期的范围之内。首先我们需要有流量的实时监控以及水位诊断分析能力,确保我们知道当前系统所处的一个状态;在业务的链路入口,我们需要做好链路入口的容量评估以及峰值流量的限流配置、同时需要开启热点隔离能力,防止黑马商品、黑产刷单等不确定因素造成的稳定性影响;在微服务内部我们需要配置单机流控,针对微服务内部异步的流量我们可以配置流量平滑能力做到削峰填谷的效果;针对下游依赖的服务以及组件(数据库、缓存等),我们可以通过慢SQL发现以及熔断、慢调用隔离、热点探测等手段保障稳定性。
如何做好大促时的系统高可用
|
Kubernetes 容器
利用阿里云搭建K8S集群踩坑记录
利用阿里云搭建K8S集群踩坑记录
|
弹性计算 Kubernetes 前端开发
K8s 从懵圈到熟练-集群伸缩原理
阿里云 K8s 集群的一个重要特性,是集群的节点可以动态的增加或减少。有了这个特性,集群才能在计算资源不足的情况下扩容新的节点,同时也可以在资源利用率降低的时候,释放节点以节省费用。这篇文章,我们将讨论阿里云 K8s 集群扩容与缩容的实现原理。理解实现原理,在遇到问题的时候,我们就可以高效地排查并定位原因。
K8s 从懵圈到熟练-集群伸缩原理
|
Kubernetes 监控 API
K8S从懵圈到熟练 - 节点下线姊妹篇
之前分享过一例集群节点NotReady的问题。在那个问题中,我们的排查路劲,从K8S集群到容器运行时,再到sdbus和systemd,不可谓不复杂。那个问题目前已经在systemd中做了修复,所以基本上能看到那个问题的几率是越来越低了。
K8S从懵圈到熟练 - 节点下线姊妹篇
|
Kubernetes NoSQL Linux
K8S从懵圈到熟练:读懂这一篇,集群节点不下线
排查完全陌生的问题,完全不熟悉的系统组件,是售后工程师的一大工作乐趣,当然也是挑战。今天借这篇文章,跟大家分析一例这样的问题。排查过程中,需要理解一些自己完全陌生的组件,比如systemd和dbus。
K8S从懵圈到熟练:读懂这一篇,集群节点不下线