性能、稳定性、反压、Exactly Once,Jstorm开源最佳实践全解析

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 在2017年在线技术峰会——阿里开源项目最佳实践上,来自阿里巴巴中间件的技术专家卫乐分享了Jstorm开源最佳实践。他主要介绍了Jstorm的架构,从性能、稳定性、监控系统、大规模部署、反压、灰度发布&热升级、Exactly-Once、新的窗口机制等方面详细扥想了Jstorm做的优化。

2017年在线技术峰会——阿里开源项目最佳实践上,来自阿里巴巴中间件的技术专家卫乐分享了Jstorm开源最佳实践。他主要介绍了Jstorm的架构,从性能、稳定性、监控系统、大规模部署、反压、灰度发布&热升级Exactly-Once、新的窗口机制等方面详细扥想了Jstorm做的优化。以下内容根据直播视频整理而成。


关于阿里中间件,欢迎访问官网了解更多:https://www.aliyun.com/aliware


视频回顾:点击进入

Pdf下载:点击进入

 

发展历史

 0ac46ad3e78c0313cf964dbc3d87d061a8d95d35

JStorm2013年开始开发,历经了25个版本。从2014年“双十一”开始,做了管控平台,包括调度、用户自定义日志等特征。2015年的“双十一”,对调度进行了优化,并且增加了反压功能,重新设计了Topology Master。2016年,除了性能优化之外,还提供了Exactly Once,包括把社区的Sliding Window和Shade Dependency等特性都移植到JStorm,此外还提供了很多新的feature,如重构的窗口机制,灰度发布等

使用场景

Jstorm在阿里集团、蚂蚁、优酷、土豆、高德都使用非常广泛。有三种部署方式:StandaloneJStorm-on-YARNJStorm-on-docker(主推,可以一键部署,扩容缩容方便)。

Jstorm已经不是简单的实时计算了,其应用在很多场景:

  • 反欺诈:Nut/Velocity
  • 审计:阿里妈妈广告/P4P,AMG
  • 数据统计分析:Eagleeye,AE,BI
  • 监控:Tlog(阿里内部监控)Rds-monitorSQL监控),Oceanbase-monitorSQL监控), Cainiao Radar, YunOSMonitor
  • 数据同步:RDS-Log-Sync, Unify-Log
  • 实时推荐:Alipay 1315, Alipay Hyperloop, TPP
  • 应用调度:AE邮件实时分析,网销宝

架构

961320f865645c6b2370bae6132d5309380113c6 

JStorm的整体架构如上图所示。最下方是部署模式,JStorm Core是JStorm计算框架本身,其上是Raw Storm API(此接口相对底层)、Exactly Once、Extension API。其上是集团内部广泛使用的Plugin,SQL engine上是应用。最右边是管控平台Koala。

JStorm增强

性能

27de119b1e321679013aaf9f331122baa4be9cdf 

上图是去年JStorm 2.2.0和Storm 1.0.2的性能对比图。硬件是32CPU Core/128G物理机,每个Worker是6G内存。从图中可以看到在不同的Worker已经不同的并发下,JStorm至少是Storm两倍以上的性能。那么,如何进行的性能优化?

29800dd135fbbccb22688a0b20de6e0cca5e2d48 

性能优化在现代的流处理领域广泛认可的一种方式是做Batch,Batch对性能优化的影响是非常大的。Batch是将消息打包,从上游接收一些消息,处理完后进行Batch再往下发,能够节省很多资源,提高性能。在此基础上进行了路径优化,即对JStorm做了JVM层面的Profile,检测框架的hot function部分(调用比较多的部分),进行针对性优化。虽然对JStorm进行了重构Metrics体系,但是底层的Metrics Core库并没有优化,所以对Meter,Histogram等进行了优化。此外,在序列化方面,对常用的序列化都进行了调优。

稳定性

49ce873fdf4832fbdc7982a097c330d6c8ad38c6 

在稳定性方面,做了以下优化:

多集群部署方面,由于涉及到异地多机房、同城多机房等问题,所以同城方面使用了ZK做多机房的容灾,JStorm自动把这些作业调到别的机房,只要保证别的机房的Worker量可以支撑作业量就不会出现问题。跨城情况相对复杂,成本也比较高,在阿里使用多链路来解决,即在多城市部署一模一样的集群消费同一份数据,在输出上做一些灾备,输出到不同的异构数据输出中,这样任意一条链路挂掉就能实时切换。

隔离方面,standalone提供了天然的隔离性,因为Docker本身用cgroup做资源隔离,所以jstorm-on-docker的隔离也相对简单。jstorm-on-yarn是在yarn上的Container中开启cgroup来做隔离。

HA方面,JStormHA是很早的特性,非常稳定。节点自检是checkhealth,用于检查supervsior。脚本会在supervsior压力过大或者内存快满的情况下自动调整可用Worker数(降低)。

监控方面,JStorm的自定义metrics重新实现,管控平台Koala集成了监控报警。Tuple life style能够根据节点间花费的时间得知拓扑结构中比较慢的环节。

升级/降级方面,降级即JStorm的反压,升级即热部署和灰度发布。

监控系统

423cde6f9e70c528db42dcda42fa55aa57ab196a 

Jstorm的监控系统如上图所示,重新设计的监控系统的优点在于自动聚合的功能。从下往上,一个Task有多个Stream,Task往上是Component,再往上是Topology,再往上是Cluster。重新设计后的优点在于可以统计所有级别的Metrics,展现完整的历史曲线,而不是单点的数据。

自定义监控

f22cc839d871829bdc1cae2fe207a5d7728f2f21 

上图是Metrics整个分级汇总的实现。具体可见github源码中最新的metrics设计文档。

大规模部署

54bed8a9780e6ddfb8385cff83ab350bae04b720 

在没有Topology Master的情况下,所有的Task汇报心跳、发送Metrics的时候都需要写ZK,并且Storm是把Metrics直接ZK里面,这样ZK的压力更大。有了Topology Master之后,Topology MasterTask的总节点,Task汇报心跳的时候只需要向Task汇报心跳,Topology Master汇总后再发送给Nimbus或者ZK,这样会使ZK的压力缩到拓扑的量级。

反压

Storm的反压,比如bolt处理消息来不及的情况下会向ZK写一个节点进行反压,监听bolt上游的节点停止发送数据直到下游的bolt能够正常处理。这样的问题是数据可能出现骤降的过程,并且反压结束数据流下来之后容易导致新一次的反压,从而导致tps会一直抖动。

ba986366af2dab10ba6558236cefd7ff83075d2c 

Jstorm做了两级的反压,第一级和Jstorm类似,通过执行队列来监测,但是不会通过ZK来协调,而是通过Topology Master来协调。在队列中会标记high water mark和low water mark,当执行队列超过high water mark时,就认为bolt来不及处理,则向TM发一条控制消息,上游开始减慢发送速率,直到下游低于low water mark时解除反压。此外,在Netty层也做了一级反压,由于每个Worker Task都有自己的发送和接收的缓冲区,可以对缓冲区设定限额、控制大小,如果spout数据量特别大,缓冲区填满会导致下游bolt的接收缓冲区填满,造成了反压。

灰度发布&热升级

3c7275ccfc25a79a558cc0a34f9b59b275630612 

一个规模很大的拓扑,以前的升级需要先把拓扑kill掉,修改代码、重新打包、重新提交,导致应用会有短暂的时间不能使用。此外,有时候只想升级部分的Worker,不想重启整个拓扑。灰度发布和热升级是做Worker内部的重启,但是不会kil拓扑。

Exactly-Once

ece338b41500baccac5a82f0fc3f6fec97ff03e2 

Jstorm中,Exactly-Once是通过Topology Master来做协调的。Jstorm中的Exactly-Once并不像以前那样每发一条消息一次。Spout发一个Batch,会有一个Batch ID,并且立马发一个Checkpoint barrier(控制消息),TM会得知发了一条新的Batch,TM会把offset记录下来。Bolt分为两种,一种是Stateless Bolt,一种是Stateful Bolt。Stateless Bolt比较简单,就是正常处理,继续往下游Bolt发。Stateful Bolt则需要把状态存起来,把Checkpoint发送给Topology Master,直到Ending boltTM发送Checkpoint barrier。当所有的Ending bolt都做完Checkpoint后,就会将状态存在Hdfs/hbase中,再通知Spout发送下一个Batch。

5f4b63ca7ac1cb696a554bdea24a2f4a98e3c7d4 

实际上,每一个batch的处理和发送是可以并行的,只是TM本身的Checkpoint是串行的,这样就可以很好的提高性能。比如中间有一个Batch处理失败了,TM会得知,此时就会做Rollback,向Spout发送Rollback barrier,从Hdfs/hbase中找出最近完成的Checkpoint,删除历史无用的Checkpoint,Spout会从状态中重新恢复Offset,Stateless Bolt会继续处理,Stateful Bolt会把Checkpoint所对应的状态从Hdfs/hbase中拉出来恢复,再根据数据计算。

其他特性

其他的特性包括自定义调度、动态调整日志级别自定义日志(外部应用可以很方便做日志采集、基于日志的监控报警)、用户自定义metrics(根据业务日志做监控报警)、优雅shutdown(把所有的消息处理完之后再shutdown)、动态扩容、更新配置

新的窗口机制

Storm的Window有很多问题,所有的数据需要统一处理,在工业级的产品中不可行。重构的窗口机制不会在内存憋每个窗口的数据,只需要存每个窗口的处理结果。重构的窗口机制,支持Processing timeIngestion timeEvent timeWatermark (late element)Window early fire

JStorm Future

Apache Beam提供了一次编写、多个不同引擎到处运行的特性。JStorm也会适配Beam,做Apache Beam JStorm runnerJStorm SQL需要进行重构和优化。将来计划在Jstorm上封装一些算子、整合框架,使其易于开发、调试,性能更加优化。

目录
打赏
0
0
0
1
83279
分享
相关文章
阿里云特惠云服务器99元与199元配置与性能和适用场景解析:高性价比之选
2025年,阿里云长效特惠活动继续推出两款极具吸引力的特惠云服务器套餐:99元1年的经济型e实例2核2G云服务器和199元1年的通用算力型u1实例2核4G云服务器。这两款云服务器不仅价格亲民,而且性能稳定可靠,为入门级用户和普通企业级用户提供了理想的选择。本文将对这两款云服务器进行深度剖析,包括配置介绍、实例规格、使用场景、性能表现以及购买策略等方面,帮助用户更好地了解这两款云服务器,以供参考和选择。
阿里云服务器实例选择指南:热门实例性能、适用场景解析对比参考
2025年,在阿里云的活动中,主售的云服务器实例规格除了轻量应用服务器之外,还有经济型e、通用算力型u1、计算型c8i、通用型g8i、计算型c7、计算型c8y、通用型g7、通用型g8y、内存型r7、内存型r8y等,以满足不同用户的需求。然而,面对众多实例规格,用户往往感到困惑,不知道如何选择。本文旨在全面解析阿里云服务器实例的各种类型,包括经济型、通用算力型、计算型、通用型和内存型等,以供参考和选择。
【阿里云】操作系统控制台操作体验与性能评测全解析
操作系统控制台是现代云计算环境中进行系统管理和运维的重要工具,提供系统概览、诊断、观测、管理等功能,支持API、SDK、CLI等管理方式。通过创建角色、系统配置和组件安装等操作,用户可以高效管理云端资源,提升操作系统的使用效率和稳定性。尤其适合需要高效管理操作系统的用户及学习云计算、网络管理的学生。建议增强自定义功能、优化性能报告和完善文档支持,以进一步提升用户体验。
53 20
【阿里云】操作系统控制台操作体验与性能评测全解析
Resume Matcher:增加面试机会!开源AI简历优化工具,一键解析简历和职位描述并优化
Resume Matcher 是一款开源AI简历优化工具,通过解析简历和职位描述,提取关键词并计算文本相似性,帮助求职者优化简历内容,提升通过自动化筛选系统(ATS)的概率,增加面试机会。
128 18
Resume Matcher:增加面试机会!开源AI简历优化工具,一键解析简历和职位描述并优化
ViDoRAG:开源多模态文档检索框架,多智能体推理+图文理解精准解析文档
ViDoRAG 是阿里巴巴通义实验室联合中国科学技术大学和上海交通大学推出的视觉文档检索增强生成框架,基于多智能体协作和动态迭代推理,显著提升复杂视觉文档的检索和生成效率。
104 8
ViDoRAG:开源多模态文档检索框架,多智能体推理+图文理解精准解析文档
阿里云服务器架构解析:从X86到高性能计算、异构计算等不同架构性能、适用场景及选择参考
当我们准备选购阿里云服务器时,阿里云提供了X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等多种架构,每种架构都有其独特的特点和适用场景。本文将详细解析这些架构的区别,探讨它们的主要特点和适用场景,并为用户提供选择云服务器架构的全面指南。
132 18
阿里云服务器ECS通用型规格族解析:实例规格、性能基准与场景化应用指南
作为ECS产品矩阵中的核心序列,通用型规格族以均衡的计算、内存、网络和存储性能著称,覆盖从基础应用到高性能计算的广泛场景。通用型规格族属于独享型云服务器,实例采用固定CPU调度模式,实例的每个CPU绑定到一个物理CPU超线程,实例间无CPU资源争抢,实例计算性能稳定且有严格的SLA保证,在性能上会更加稳定,高负载情况下也不会出现资源争夺现象。本文将深度解析阿里云ECS通用型规格族的技术架构、实例规格特性、最新价格政策及典型应用场景,为云计算选型提供参考。
重学Java基础篇—ThreadLocal深度解析与最佳实践
ThreadLocal 是一种实现线程隔离的机制,为每个线程创建独立变量副本,适用于数据库连接管理、用户会话信息存储等场景。
56 5
R1-Onevision:开源多模态推理之王!复杂视觉难题一键解析,超越GPT-4V
R1-Onevision 是一款开源的多模态视觉推理模型,基于 Qwen2.5-VL 微调,专注于复杂视觉推理任务。它通过整合视觉和文本数据,能够在数学、科学、深度图像理解和逻辑推理等领域表现出色,并在多项基准测试中超越了 Qwen2.5-VL-7B 和 GPT-4V 等模型。
120 0
R1-Onevision:开源多模态推理之王!复杂视觉难题一键解析,超越GPT-4V
阿里云服务器第八代通用型g8i实例评测:性能与适用场景解析
阿里云服务器通用型g8i实例怎么样?g8i实例采用CIPU+飞天技术架构,并搭载最新的Intel 第五代至强可扩展处理器(代号EMR),不仅性能得到大幅提升,同时还拥有AMX加持的AI能力增强,以及全球范围内率先支持的TDX机密虚拟机能力。这些特性使得g8i实例在AI增强和全面安全防护两大方面表现出色,尤其适用于在线音视频及AI相关应用。本文将深入探讨g8i实例的产品特性、优势、适用场景及规格族,以帮助您更好地了解这款产品,以供参考和选择。

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等