Java多线程-线程状态

简介: 线程状态6个状态定义:java.lang.Thread.StateNew: 尚未启动的线程的线程状态。Runnable: 可运行线程的线程状态,等待CPU调度。Blocked: 线程阻塞等待监视器锁定的线程状态。

线程状态

6个状态定义:java.lang.Thread.State

  1. New: 尚未启动的线程的线程状态。
  2. Runnable: 可运行线程的线程状态,等待CPU调度。
  3. Blocked: 线程阻塞等待监视器锁定的线程状态。处于synchronized同步代码块或方法中被阻塞。
  4. Waiting: 等待线程的线程状态。下列不带超时的方式:Object.wait、Thread.join、LockSupport.park
  5. Timed Waiting: 具有指定等待时间的等待线程的线程状态。下列超时的方式:Thread.sleep、Object.wait、Thread.join、LockSupport.parkNanos、LockSupport.parkUntil

image

常见线程状态切换

新建->运行->终止

Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("thread1当前状态:" + Thread.currentThread().getState().toString());
                System.out.println("thread1 执行了");
            }
        });
System.out.println("没调用start方法,thread1当前状态:" + thread1.getState().toString());
thread1.start();
Thread.sleep(2000L); // 等待thread1执行结束,再看状态
System.out.println("等待两秒,再看thread1当前状态:" + thread1.getState().toString());

image

新建->运行->等待->运行->终止

Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {// 将线程2移动到等待状态,1500后自动唤醒
                    Thread.sleep(1500);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("thread2当前状态:" + Thread.currentThread().getState().toString());
                System.out.println("thread2 执行了");
            }
        });
System.out.println("没调用start方法,thread2当前状态:" + thread2.getState().toString());
thread2.start();
System.out.println("调用start方法,thread2当前状态:" + thread2.getState().toString());
Thread.sleep(200L); // 等待200毫秒,再看状态
System.out.println("等待200毫秒,再看thread2当前状态:" + thread2.getState().toString());
Thread.sleep(3000L); // 再等待3秒,让thread2执行完毕,再看状态
System.out.println("等待3秒,再看thread2当前状态:" + thread2.getState().toString());

image

新建->运行->阻塞->运行->终止

Thread thread3 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (Demo2.class) {
                    System.out.println("thread3当前状态:" + Thread.currentThread().getState().toString());
                    System.out.println("thread3 执行了");
                }
            }
        });
synchronized (Demo2.class) {
    System.out.println("没调用start方法,thread3当前状态:" + thread3.getState().toString());
    thread3.start();
    System.out.println("调用start方法,thread3当前状态:" + thread3.getState().toString());
    Thread.sleep(200L); // 等待200毫秒,再看状态
    System.out.println("等待200毫秒,再看thread3当前状态:" + thread3.getState().toString());
}
Thread.sleep(3000L); // 再等待3秒,让thread3执行完毕,再看状态
System.out.println("等待3秒,让thread3抢到锁,再看thread3当前状态:" + thread3.getState().toString());

image

相关文章
|
8天前
|
安全 算法 Java
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第11天】 在Java中,高效的并发编程是提升应用性能和响应能力的关键。本文将探讨Java并发的核心概念,包括线程安全、锁机制、线程池以及并发集合等,同时提供实用的编程技巧和最佳实践,帮助开发者在保证线程安全的前提下,优化程序性能。我们将通过分析常见的并发问题,如竞态条件、死锁,以及如何利用现代Java并发工具来避免这些问题,从而构建更加健壮和高效的多线程应用程序。
|
1天前
|
安全 Java
java多线程(一)(火车售票)
java多线程(一)(火车售票)
|
1天前
|
安全 Java 调度
Java并发编程:深入理解线程与锁
【4月更文挑战第18天】本文探讨了Java中的线程和锁机制,包括线程的创建(通过Thread类、Runnable接口或Callable/Future)及其生命周期。Java提供多种锁机制,如`synchronized`关键字、ReentrantLock和ReadWriteLock,以确保并发访问共享资源的安全。此外,文章还介绍了高级并发工具,如Semaphore(控制并发线程数)、CountDownLatch(线程间等待)和CyclicBarrier(同步多个线程)。掌握这些知识对于编写高效、正确的并发程序至关重要。
|
1天前
|
安全 Java 程序员
Java中的多线程并发编程实践
【4月更文挑战第18天】在现代软件开发中,为了提高程序性能和响应速度,经常需要利用多线程技术来实现并发执行。本文将深入探讨Java语言中的多线程机制,包括线程的创建、启动、同步以及线程池的使用等关键技术点。我们将通过具体代码实例,分析多线程编程的优势与挑战,并提出一系列优化策略来确保多线程环境下的程序稳定性和性能。
|
2天前
|
缓存 分布式计算 监控
Java并发编程:深入理解线程池
【4月更文挑战第17天】在Java并发编程中,线程池是一种非常重要的技术,它可以有效地管理和控制线程的执行,提高系统的性能和稳定性。本文将深入探讨Java线程池的工作原理,使用方法以及在实际开发中的应用场景,帮助读者更好地理解和使用Java线程池。
|
2天前
|
存储 安全 Java
Java中的容器,线程安全和线程不安全
Java中的容器,线程安全和线程不安全
9 1
|
2天前
|
Java 开发者
Java中多线程并发控制的实现与优化
【4月更文挑战第17天】 在现代软件开发中,多线程编程已成为提升应用性能和响应能力的关键手段。特别是在Java语言中,由于其平台无关性和强大的运行时环境,多线程技术的应用尤为广泛。本文将深入探讨Java多线程的并发控制机制,包括基本的同步方法、死锁问题以及高级并发工具如java.util.concurrent包的使用。通过分析多线程环境下的竞态条件、资源争夺和线程协调问题,我们提出了一系列实现和优化策略,旨在帮助开发者构建更加健壮、高效的多线程应用。
3 0
|
3天前
|
缓存 监控 Java
Java并发编程:线程池与任务调度
【4月更文挑战第16天】Java并发编程中,线程池和任务调度是核心概念,能提升系统性能和响应速度。线程池通过重用线程减少创建销毁开销,如`ThreadPoolExecutor`和`ScheduledThreadPoolExecutor`。任务调度允许立即或延迟执行任务,具有灵活性。最佳实践包括合理配置线程池大小、避免过度使用线程、及时关闭线程池和处理异常。掌握这些能有效管理并发任务,避免性能瓶颈。
|
4天前
|
设计模式 运维 安全
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第15天】在Java开发中,多线程编程是提升应用程序性能和响应能力的关键手段。然而,它伴随着诸多挑战,尤其是在保证线程安全的同时如何避免性能瓶颈。本文将探讨Java并发编程的核心概念,包括同步机制、锁优化、线程池使用以及并发集合等,旨在为开发者提供实用的线程安全策略和性能优化技巧。通过实例分析和最佳实践的分享,我们的目标是帮助读者构建既高效又可靠的多线程应用。
|
4天前
|
存储 缓存 Java
线程同步的艺术:探索 JAVA 主流锁的奥秘
本文介绍了 Java 中的锁机制,包括悲观锁与乐观锁的并发策略。悲观锁假设多线程环境下数据冲突频繁,访问前先加锁,如 `synchronized` 和 `ReentrantLock`。乐观锁则在访问资源前不加锁,通过版本号或 CAS 机制保证数据一致性,适用于冲突少的场景。锁的获取失败时,线程可以选择阻塞(如自旋锁、适应性自旋锁)或不阻塞(如无锁、偏向锁、轻量级锁、重量级锁)。此外,还讨论了公平锁与非公平锁,以及可重入锁与非可重入锁的特性。最后,提到了共享锁(读锁)和排他锁(写锁)的概念,适用于不同类型的并发访问需求。
35 2