java中线程安全,线程死锁,线程通信快速入门

简介: java中线程安全,线程死锁,线程通信快速入门一:多线程安全问题1 引入复制代码/* * 多线程并发访问同一个数据资源 * 3个线程,对一个票资源,出售 */public class ThreadDemo { public static void main(String[] arg...

java中线程安全,线程死锁,线程通信快速入门
一:多线程安全问题

1 引入

复制代码

/*
 * 多线程并发访问同一个数据资源
 * 3个线程,对一个票资源,出售
 */
public class ThreadDemo {
 public static void main(String[] args) {
   //创建Runnable接口实现类对象
   Tickets t = new Tickets();
   //创建3个Thread类对象,传递Runnable接口实现类
   Thread t0 = new Thread(t);
   Thread t1 = new Thread(t);
   Thread t2 = new Thread(t);
   
   t0.start();
   t1.start();
   t2.start();
   
 }
}
/*
 *  通过线程休眠,出现安全问题
 */
public class Tickets implements Runnable{
 
 //定义出售的票源
 private int ticket = 100;
 private Object obj = new Object();
 
 public void run(){
   while(true){

     //对票数判断,大于0,可以出售,变量--操作
       if( ticket > 0){
         try{
            Thread.sleep(50); //加了休眠让其他线程有执行机会
         }catch(Exception ex){}
         System.out.println(Thread.currentThread().getName()+" 出售第 "+ticket--);
       }
   }
 }
}

复制代码

运行结果出现了这么一种情况:

可见票数为0和-1时都进行了售卖,由此可见多线程操作共享数据存在安全隐患

具体的讲:该处有三个线程t0,t1,t2同时对tickets进行操作,程序一运行,3个线程抢占CPU资源,运行执行过if(tickets>0)接着执行休眠操作,在这短短50ms的够CPU干很多事了,继续卖票。到最后休眠时间结束,线程无需在进行判断tickets是否大于0,便接着往下执行,就导致了安全问题

###2:解决办法

2.1java中提供了同步机制,能够解决线程的安全性问题。

复制代码

//同步代码块,  同步代码块的锁对象可以是任意的对象
     synchronized (锁对象){
        可能产生线程安全问题的代码
        }
      

//同步方法, 同步方法中的锁对象是 this
    public synchronized void method()
          可能产生线程安全问题的代码
    }
       
//静态同步方法,静态同步方法中的锁对象是 类名.class
    public synchronized void method()
                  可能产生线程安全问题的代码
    }
 

复制代码

2.2同步方法(推荐)或同步代码块解决该售票例子的线程安全问题

复制代码
public class Tickets implements Runnable {

// 共一百票
int tickets = 20;
Object obj = new Object();

@Override
public void run() {
    // 模拟卖票
    while (true) {
        method();
    }
}

public synchronized void method() {
    if (tickets > 0) {
        // 线程休眠模拟安全问题
        try {
            Thread.sleep(50);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName() + "正在卖票:" + tickets--);
    }
}

}
复制代码

2.3同步代码块的原理

同步操作给对象上了一把对象锁(对象监视器),没有锁的线程不能够继续往下执行,只能等。
线程遇到同步代码块后,线程判断是否有同步锁,有则获取锁,进入同步中去执行,执行完毕释放锁。没有则不能够进行同步代码块中
由于加了同步后,线程进同步判断锁,获取锁,执行完毕释放锁,导致程序的运行速度下降。

举个上厕所的例子:假设有一片区域只有一个厕所且只有一个坑位(共享数据),有三人A,B,C(三线程)需要上厕所,A拿着钥匙先进去上小厕,需要开门,这个门就相当于对象锁,你进来就得先开门并关上,小厕上了一分钟(Thread.sleep),上完出来给钥匙给B(释放锁),B在拿着钥匙去开门上大厕,时间十分钟。。这时候C就只能在门外干急着了等B上完了

3:Lock锁对synchronized的改进

使用同步方法有个缺点:当在sleep休眠时若发生了异常,则该线程是出不了同步的,锁对象释放不了。

因此,SUN公司在jdk5后提供了个Lock接口,Lock接口中的常用方法

void lock()
void unlock()

复制代码
public class Tickets implements Runnable {

// 共一百票
int tickets = 20;
private Lock lock = new ReentrantLock();

@Override
public void run() {
    // 模拟卖票
    while (true) {
        //调用lock方法加锁
        lock.lock();
        if (tickets > 0) {
            // 线程休眠模拟安全问题
            try {
                Thread.sleep(50);
                System.out.println(Thread.currentThread().getName()+" 出售第"+tickets--);
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
            }
        }
    }
}

}
复制代码

二:线程的死锁
同步锁使用的弊端:当线程任务中出现了多个同步(多个锁)时,如果同步中嵌套了其他的同步。这时容易引发一种现象:程序出现无限等待,这种现象我们称为死锁。这种情况能避免就避免掉
synchronzied(A锁){

synchronized(B锁){
     

  }
}
 死锁的一个形象比喻:两个人打架互相揪着对方头发不放,A说你先放,B说你先放,两人都不肯先放,就造成了死锁.

 下面为产生死锁的一个例子

复制代码
public class lockA {

//保证对象的唯一性
private lockA(){
    
}
public final static lockA locka = new lockA();

}

public class LockB {

//保证对象的唯一性
private LockB() {
    
}
public static final LockB lockb = new LockB();

}

public class DeadLock implements Runnable {

private int i = 0;

@Override
public void run() {
    while (true) {
        if (i % 2 == 0) {
            // 先进入A同步,在进入B同步
            synchronized (lockA.locka) {
                System.out.println("if---locka");
                synchronized(LockB.lockb){
                    System.out.println("if---lockb");
                }
            }
        } else {
            //先进入B同步在进入A同步
            synchronized (LockB.lockb) {
                System.out.println("else---lockb");
                synchronized(lockA.locka){
                    System.out.println("else---locka");
                }
            }
        }
        i++;
    }

}

}

public class DeadLockDemo {

public static void main(String[] args) {
    DeadLock deadLock = new DeadLock();
    Thread t0 = new Thread(deadLock);
    Thread t1 = new Thread(deadLock);
    t0.start();t1.start();
}

}
复制代码

三:线程通信
线程之间的通信:多个线程在处理同一个资源,但是处理的动作(线程的任务)却不相同。通过一定的手段使各个线程能有效的利用资源。而这种手段即—— 等待唤醒机制

打个比喻:就好像平时收快递一样,快递先由卖家包装,联系收件人员收发货,快递一路经过各个地点中转在到达你的手里。把这一系列过程看作一个个线程,所有线程共同合作处理你这个包裹,从而达到有效利用资源。

等待唤醒机制所涉及到的方法:

wait() :等待,将正在执行的线程释放其执行资格 和 执行权,并存储到线程池中。
notify():唤醒,唤醒线程池中被wait()的线程,一次唤醒一个,而且是任意的。
notifyAll(): 唤醒全部:可以将线程池中的所有wait() 线程都唤醒。
其实,所谓唤醒的意思就是让 线程池中的线程具备执行资格。必须注意的是,这些方法都是在 同步中才有效。同时这些方法在使用时必须标明所属锁,这样才可以明确出这些方法操作的到底是哪个锁上的线程。

仔细查看JavaAPI之后,发现这些方法 并不定义在 Thread中,也没定义在Runnable接口中,却被定义在了Object类中,为什么这些操作线程的方法定义在Object类中?

因为这些方法在使用时,必须要标明所属的锁,而锁又可以是任意对象。能被任意对象调用的方法一定定义在Object类中。

Java实现代码如下:

复制代码
A 线程等待与唤醒案例的实现

 /*
  *  定义资源类,有2个成员变量
  *  name,sex
  *  同时有2个线程,对资源中的变量操作
  *  1个对name,age赋值
  *  2个对name,age做变量的输出打印
  */
 public class Resource {
  public String name;
  public String sex;
  public boolean flag = false;
 }

 /*
  *  输入的线程,对资源对象Resource中成员变量赋值
  *  一次赋值 张三,男
  *  下一次赋值 lisi,nv
  */
 public class Input implements Runnable {
  private Resource r ;
  
  public Input(Resource r){
    this.r = r;
  }
  
  public void run() {
    int i = 0 ;
    while(true){
      synchronized(r){
        //标记是true,等待
          if(r.flag){
            try{r.wait();}catch(Exception ex){}
          }
        
        if(i%2==0){
          r.name = "张三";
          r.sex = "男";
        }else{
          r.name = "lisi";
          r.sex = "nv";
        }
        //将对方线程唤醒,标记改为true
        r.flag = true;
        r.notify();
      }
      i++;
    }
  }

 }
 
 /*
  *  输出线程,对资源对象Resource中成员变量,输出值
  */
 public class Output implements Runnable {
  private Resource r ;
  
  public Output(Resource r){
    this.r = r;
  }
  public void run() {
    while(true){
      synchronized(r){  
        //判断标记,是false,等待
      if(!r.flag){
        try{r.wait();}catch(Exception ex){}
        }
      System.out.println(r.name+".."+r.sex);
      //标记改成false,唤醒对方线程
      r.flag = false;
      r.notify();
      }
    }
  }

 }

 /*
  *  开启输入线程和输出线程,实现赋值和打印值
  */
 public class ThreadDemo{
  public static void main(String[] args) {
    
    Resource r = new Resource();
    
    Input in = new Input(r);
    Output out = new Output(r);
    
    Thread tin = new Thread(in);
    Thread tout = new Thread(out);
    
    tin.start();
    tout.start();
  }
 }

复制代码
输出结果如下:(完成了协同工作,赋值完后输出,输出完后赋值的目的)

原文地址 https://www.cnblogs.com/zengcongcong/p/11318686.html

相关文章
|
4天前
|
安全 Java
深入理解 Java 多线程和并发工具类
【4月更文挑战第19天】本文探讨了Java多线程和并发工具类在实现高性能应用程序中的关键作用。通过继承`Thread`或实现`Runnable`创建线程,利用`Executors`管理线程池,以及使用`Semaphore`、`CountDownLatch`和`CyclicBarrier`进行线程同步。保证线程安全、实现线程协作和性能调优(如设置线程池大小、避免不必要同步)是重要环节。理解并恰当运用这些工具能提升程序效率和可靠性。
|
5天前
|
安全 Java
java多线程(一)(火车售票)
java多线程(一)(火车售票)
|
5天前
|
安全 Java 调度
Java并发编程:深入理解线程与锁
【4月更文挑战第18天】本文探讨了Java中的线程和锁机制,包括线程的创建(通过Thread类、Runnable接口或Callable/Future)及其生命周期。Java提供多种锁机制,如`synchronized`关键字、ReentrantLock和ReadWriteLock,以确保并发访问共享资源的安全。此外,文章还介绍了高级并发工具,如Semaphore(控制并发线程数)、CountDownLatch(线程间等待)和CyclicBarrier(同步多个线程)。掌握这些知识对于编写高效、正确的并发程序至关重要。
|
5天前
|
安全 Java 程序员
Java中的多线程并发编程实践
【4月更文挑战第18天】在现代软件开发中,为了提高程序性能和响应速度,经常需要利用多线程技术来实现并发执行。本文将深入探讨Java语言中的多线程机制,包括线程的创建、启动、同步以及线程池的使用等关键技术点。我们将通过具体代码实例,分析多线程编程的优势与挑战,并提出一系列优化策略来确保多线程环境下的程序稳定性和性能。
|
6天前
|
Java 测试技术 索引
滚雪球学Java(14):快速入门JavaSE-for循环语句,轻松掌握编程技巧
【4月更文挑战第3天】🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!
18 1
滚雪球学Java(14):快速入门JavaSE-for循环语句,轻松掌握编程技巧
|
6天前
|
缓存 分布式计算 监控
Java并发编程:深入理解线程池
【4月更文挑战第17天】在Java并发编程中,线程池是一种非常重要的技术,它可以有效地管理和控制线程的执行,提高系统的性能和稳定性。本文将深入探讨Java线程池的工作原理,使用方法以及在实际开发中的应用场景,帮助读者更好地理解和使用Java线程池。
|
6天前
|
存储 安全 Java
Java中的容器,线程安全和线程不安全
Java中的容器,线程安全和线程不安全
15 1
|
6天前
|
Java 开发者
Java中多线程并发控制的实现与优化
【4月更文挑战第17天】 在现代软件开发中,多线程编程已成为提升应用性能和响应能力的关键手段。特别是在Java语言中,由于其平台无关性和强大的运行时环境,多线程技术的应用尤为广泛。本文将深入探讨Java多线程的并发控制机制,包括基本的同步方法、死锁问题以及高级并发工具如java.util.concurrent包的使用。通过分析多线程环境下的竞态条件、资源争夺和线程协调问题,我们提出了一系列实现和优化策略,旨在帮助开发者构建更加健壮、高效的多线程应用。
7 0
|
7天前
|
缓存 监控 Java
Java并发编程:线程池与任务调度
【4月更文挑战第16天】Java并发编程中,线程池和任务调度是核心概念,能提升系统性能和响应速度。线程池通过重用线程减少创建销毁开销,如`ThreadPoolExecutor`和`ScheduledThreadPoolExecutor`。任务调度允许立即或延迟执行任务,具有灵活性。最佳实践包括合理配置线程池大小、避免过度使用线程、及时关闭线程池和处理异常。掌握这些能有效管理并发任务,避免性能瓶颈。
|
8天前
|
设计模式 运维 安全
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第15天】在Java开发中,多线程编程是提升应用程序性能和响应能力的关键手段。然而,它伴随着诸多挑战,尤其是在保证线程安全的同时如何避免性能瓶颈。本文将探讨Java并发编程的核心概念,包括同步机制、锁优化、线程池使用以及并发集合等,旨在为开发者提供实用的线程安全策略和性能优化技巧。通过实例分析和最佳实践的分享,我们的目标是帮助读者构建既高效又可靠的多线程应用。