只要三步!阿里云DLA帮你处理海量JSON数据

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 仅仅需要3步,利用阿里云Data Lake Analytics就可以完成对海量JSON数据的处理,或者更为复杂的ETL流程。

概述

您可能有大量应用程序产生的JSON数据,您可能需要对这些JSON数据进行整理,去除不想要的字段,或者只保留想要的字段,或者仅仅是进行数据查询。

那么,利用阿里云Data Lake Analytics或许是目前能找到的云上最为便捷的达到这一目标的服务了。仅仅需要3步,就可以完成对海量JSON数据的处理,或者更为复杂的ETL流程。

第一步:JSON数据到阿里云OSS

利用各种手段,将JSON数据投递到OSShttps://www.aliyun.com/product/oss)中。
通常,对于云上日志链路,还有一种JSON到OSS的投递链路,可以参考“云原生日志数据分析上手指南”其中的JSON部分。

第二步:DLA中建表

参考上述“云原生日志数据分析上手指南”,其中已经有海量JSON数据的分区模式建表方法了。本例中,以非分区表为例,假设,数据文件中每一行一个JSON数据,JSON数据放置的OSS路径为:

oss://your_bucket/json_data/...
AI 代码解读

则,在DLA中执行建表:

CREATE EXTERNAL TABLE simple_json (
    data STRING
)
STORED AS TEXTFILE
LOCATION 'oss://your_bucket/json_data/';
AI 代码解读

第三步:利用DLA JSON函数SQL处理

json_remove
从JSON中去除指定JSON Path的数据。可以一次处理一个JSON path,也可以一次处理多个JSON path。注意:目前还不支持“..”等JSON path的模糊匹配,不久后会支持。

json_remove(json_string, json_path_string) -> json_string
json_remove(json_string, array[json_path_string]) -> json_string
AI 代码解读

示例:

select json_remove(
'{
    "glossary": {
        "title": "example glossary",
        "GlossDiv": {
            "title": "S",
            "GlossList": {
                "GlossEntry": {
                    "ID": "SGML",
                    "SortAs": "SGML",
                    "GlossTerm": "Standard Generalized Markup Language",
                    "Acronym": "SGML",
                    "Abbrev": "ISO 8879:1986",
                    "GlossDef": {
                        "para": "A meta-markup language, used to create markup languages such as DocBook.",
                        "GlossSeeAlso": ["GML", "XML"]
                    },
                    "GlossSee": "markup"
                }
            }
        }
    }
}'
, '$.glossary.GlossDiv') a;

-> {"glossary":{"title":"example glossary"}}


select json_remove(
'{
    "glossary": {
        "title": "example glossary",
        "GlossDiv": {
            "title": "S",
            "GlossList": {
                "GlossEntry": {
                    "ID": "SGML",
                    "SortAs": "SGML",
                    "GlossTerm": "Standard Generalized Markup Language",
                    "Acronym": "SGML",
                    "Abbrev": "ISO 8879:1986",
                    "GlossDef": {
                        "para": "A meta-markup language, used to create markup languages such as DocBook.",
                        "GlossSeeAlso": ["GML", "XML"]
                    },
                    "GlossSee": "markup"
                }
            }
        }
    }
}'
, array['$.glossary.title', '$.glossary.GlossDiv.title']) a;

{"glossary":{"GlossDiv":{"GlossList":{"GlossEntry":{"GlossTerm":"Standard Generalized Markup Language","GlossSee":"markup","SortAs":"SGML","GlossDef":{"para":"A meta-markup language, used to create markup languages such as DocBook.","GlossSeeAlso":["GML","XML"]},"ID":"SGML","Acronym":"SGML","Abbrev":"ISO 8879:1986"}}}}}
AI 代码解读

json_reserve
从JSON中保留指定JSON Path的数据,去除其他的数据。可以一次处理一个JSON path,也可以一次处理多个JSON path。注意:目前还不支持“..”等JSON path的模糊匹配,不久后会支持。

json_reserve(json_string, json_path_string) -> json_string
json_reserve(json_string, array[json_path_string]) -> json_string
AI 代码解读

示例:

select json_reserve(
'{
    "glossary": {
        "title": "example glossary",
        "GlossDiv": {
            "title": "S",
            "GlossList": {
                "GlossEntry": {
                    "ID": "SGML",
                    "SortAs": "SGML",
                    "GlossTerm": "Standard Generalized Markup Language",
                    "Acronym": "SGML",
                    "Abbrev": "ISO 8879:1986",
                    "GlossDef": {
                        "para": "A meta-markup language, used to create markup languages such as DocBook.",
                        "GlossSeeAlso": ["GML", "XML"]
                    },
                    "GlossSee": "markup"
                }
            }
        }
    }
}'
, array['$.glossary.title']) a;

-> {"glossary":{"title":"example glossary"}}


select json_reserve(
'{
    "glossary": {
        "title": "example glossary",
        "GlossDiv": {
            "title": "S",
            "GlossList": {
                "GlossEntry": {
                    "ID": "SGML",
                    "SortAs": "SGML",
                    "GlossTerm": "Standard Generalized Markup Language",
                    "Acronym": "SGML",
                    "Abbrev": "ISO 8879:1986",
                    "GlossDef": {
                        "para": "A meta-markup language, used to create markup languages such as DocBook.",
                        "GlossSeeAlso": ["GML", "XML"]
                    },
                    "GlossSee": "markup"
                }
            }
        }
    }
}'
, array['$.glossary.title', '$.glossary.GlossDiv.title', '$.glossary.GlossDiv.GlossList.GlossEntry.ID']) a;

-> "glossary":{"title":"example glossary","GlossDiv":{"GlossList":{"GlossEntry":{"ID":"SGML"}},"title":"S"}}}
AI 代码解读

后记

还可以利用Data Lake Analytics强大的云上数据处理能力,进行多源数据融合处理、分析,回流到其他数据库、存储系统中。

更多信息请参考:https://datalakeanalytics.console.aliyun.com/overview

Data Lake Analytics首购和流量包优惠

首购用户1元10TB,流量包阶梯折扣优惠:https://et.aliyun.com/bdad/datalake
产品详情:https://www.aliyun.com/product/datalakeanalytics
云栖社区:https://yq.aliyun.com/teams/396
知乎社区:https://zhuanlan.zhihu.com/data-lake-analytics

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
目录
打赏
0
0
0
0
4208
分享
相关文章
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——封装统一返回的数据结构
本文介绍了在Spring Boot中封装统一返回的数据结构的方法。通过定义一个泛型类`JsonResult<T>`,包含数据、状态码和提示信息三个属性,满足不同场景下的JSON返回需求。例如,无数据返回时可设置默认状态码"0"和消息"操作成功!",有数据返回时也可自定义状态码和消息。同时,文章展示了如何在Controller中使用该结构,通过具体示例(如用户信息、列表和Map)说明其灵活性与便捷性。最后总结了Spring Boot中JSON数据返回的配置与实际项目中的应用技巧。
52 0
|
7天前
|
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——使用 fastJson 处理 null
本文介绍如何使用 fastJson 处理 null 值。与 Jackson 不同,fastJson 需要通过继承 `WebMvcConfigurationSupport` 类并覆盖 `configureMessageConverters` 方法来配置 null 值的处理方式。例如,可将 String 类型的 null 转为 "",Number 类型的 null 转为 0,避免循环引用等。代码示例展示了具体实现步骤,包括引入相关依赖、设置序列化特性及解决中文乱码问题。
32 0
|
7天前
|
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——Spring Boot 默认对Json的处理
本文介绍了在Spring Boot中返回Json数据的方法及数据封装技巧。通过使用`@RestController`注解,可以轻松实现接口返回Json格式的数据,默认使用的Json解析框架是Jackson。文章详细讲解了如何处理不同数据类型(如类对象、List、Map)的Json转换,并提供了自定义配置以应对null值问题。此外,还对比了Jackson与阿里巴巴FastJson的特点,以及如何在项目中引入和配置FastJson,解决null值转换和中文乱码等问题。
33 0
如何在Python中高效实现CSV到JSON的数据转换
在实际项目中,数据格式转换是常见问题,尤其从CSV到JSON的转换。本文深入探讨了多种转换方法,涵盖Python基础实现、数据预处理、错误处理、性能优化及调试验证技巧。通过分块处理、并行处理等手段提升大文件转换效率,并介绍如何封装为命令行工具或Web API,实现自动化批量处理。关键点包括基础实现、数据清洗、异常捕获、性能优化和单元测试,确保转换流程稳定高效。
156 83
JSON数据解析实战:从嵌套结构到结构化表格
在信息爆炸的时代,从杂乱数据中提取精准知识图谱是数据侦探的挑战。本文以Google Scholar为例,解析嵌套JSON数据,提取文献信息并转换为结构化表格,通过Graphviz制作技术关系图谱,揭示文献间的隐秘联系。代码涵盖代理IP、请求头设置、JSON解析及可视化,提供完整实战案例。
JSON数据解析实战:从嵌套结构到结构化表格
python语言采集淘宝商品详情数据,json数据示例返回
通过淘宝开放平台的API接口,开发者可以轻松获取商品详情数据,并利用这些数据进行商品分析、价格监控、库存管理等操作。本文提供的示例代码和JSON数据解析方法,可以帮助您快速上手淘宝商品数据的采集与处理。
淘宝商品详情API接口概述与JSON数据示例
淘宝商品详情API是淘宝开放平台提供的核心接口之一,为开发者提供了获取商品深度信息的能力。以下是技术细节和示例:
处理从API返回的JSON数据时返回Unicode编码字符串怎么处理
在处理API返回的JSON数据时,遇到类似`\u7f51\u7edc\u8fde\u63a5\u9519\u8bef`的Unicode编码字符串,可使用JavaScript内置方法转换为可读文字。主要方法包括:1. 使用`JSON.parse`自动解析;2. 使用`decodeURIComponent`和`escape`组合解码;3. 在API调用中直接处理响应数据。这些方法能有效处理多语言内容,确保正确显示非ASCII字符。
淘宝商品评论数据API接口详解及JSON示例返回
淘宝商品评论数据API接口是淘宝开放平台提供的一项服务,旨在帮助开发者通过编程方式获取淘宝商品的评论数据。这些数据包括评论内容、评论时间、评论者信息、评分等,对于电商分析、用户行为研究、竞品分析等领域都具有极高的价值。
|
2月前
|
解析电商商品详情API接口系列,json数据示例参考
电商商品详情API接口是电商平台的重要组成部分,提供了商品的详细信息,支持用户进行商品浏览和购买决策。通过合理的API设计和优化,可以提升系统性能和用户体验。希望本文的解析和示例能够为开发者提供参考,帮助构建高效、可靠的电商系统。
72 12

数据库

+关注