FM算法介绍

  1. 云栖社区>
  2. 阿里云机器学习>
  3. 博客>
  4. 正文

FM算法介绍

傲海 2019-08-05 17:46:33 浏览860
展开阅读全文

概述

FM (Factorization Machine) 算法可进行回归和二分类预测,它的特点是考虑了特征之间的相互作用,是一种非线性模型,目前FM算法是推荐领域被验证的效果较好的推荐方案之一,在诸多电商、广告、直播厂商的推荐领域有广泛应用。

PAI平台的FM算法基于阿里内部大数据的锤炼,具备性能优越、效果突出的特点。具体使用方式可以参见首页模板:

使用FM算法整体流程需要包含FM训练和FM预测组件,可以搭配评估组件使用。

输入数据要求

目前PAI的FM算法只支持libsvm格式的数据,数据需要包含两列,分别是特征列和目标列。

  • 目标列:Double类型
  • 特征列:String类型,特征要以k:v格式输入,特征直接以逗号分隔

如图:

组件说明

1.FM训练

在“参数设置”中可以设置回归或者分类两种模式:

PAI命令

参数解释取值
tensorColName训练

网友评论

登录后评论
0/500
评论
傲海
+ 关注
所属云栖号: 阿里云机器学习