常用的十大 python 图像处理工具

简介: 图像处理中的常见任务包括显示图像,基本操作如裁剪、翻转、旋转等,图像分割,分类和特征提取,图像恢复和图像识别。
TB11DkWeoKF3KVjSZFEXXXExFXa.jpg

本文为 AI 研习社编译的技术博客,原标题 :

10 Python image manipulation tools.

作者 | Parul Pandey

翻译 | 安其罗•乔尔、JimmyHua       

编辑 | 王立鱼

原文链接:

https://towardsdatascience.com/image-manipulation-tools-for-python-6eb0908ed61f

TB1AYFSeLWG3KVjSZFgXXbTspXa.jpg

图片来自 Pexels 的Luriko Yamaguchi

今天,在我们的世界里充满了数据,图像成为构成这些数据的重要组成部分。但无论是用于何种用途,这些图像都需要进行处理。图像处理就是分析和处理数字图像的过程,主要旨在提高其质量或从中提取一些信息,然后可以将其用于某种用途。

图像处理中的常见任务包括显示图像,基本操作如裁剪、翻转、旋转等,图像分割,分类和特征提取,图像恢复和图像识别。Python成为这种图像处理任务是一个恰当选择,这是因为它作为一种科学编程语言正在日益普及,并且在其生态系统中免费提供许多最先进的图像处理工具供大家使用。

让我们看一下可以用于图像处理任务中的常用 Python 库有哪些吧。

  1.scikit-image

scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。

资源

文档里记录了丰富的例子和实际用例,阅读下面的文档:

http://scikit-image.org/docs/stable/user_guide.html

用法

该包作为skimage导入,大多数功能都在子模块中找的到。下面列举一些skimage的例子:

图像过滤

TB1bl0ReL1H3KVjSZFBXXbSMXXa.png TB1.ShTeR1D3KVjSZFyXXbuFpXa.jpg

使用match_template函数进行模板匹配

TB1JnJUeUuF3KVjSZK9XXbVtXXa.jpg

你可以通过此处查看图库找到更多示例。

  2. Numpy

Numpy是Python编程的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准Numpy数组。因此,我们可以通过使用基本的NumPy操作,例如切片、掩膜和花式索引,来修改图像的像素值。可以使用skimage加载图像并使用matplotlib显示图像。

资源

Numpy的官方文档页面提供了完整的资源和文档列表:

http://www.numpy.org/

用法

使用Numpy来掩膜图像.

TB13M8VeQWE3KVjSZSyXXXocXXa.png TB1y5lSeUWF3KVjSZPhXXXclXXa.jpg

  3.Scipy

scipy是Python的另一个类似Numpy的核心科学模块,可用于基本的图像操作和处理任务。特别是子模块scipy.ndimage,提供了在n维NumPy数组上操作的函数。该包目前包括线性和非线性滤波,二值形态学,B样条插值和对象测量等功能函数。

资源

有关scipy.ndimage包提供的完整功能列表,请参阅下面的链接:

https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution

用法

使用SciPy通过高斯滤波器进行模糊:

TB1GDFTeROD3KVjSZFFXXcn9pXa.png TB1nyXSeUCF3KVjSZJnXXbnHFXa.jpg

  4. PIL/ Pillow

PIL( Python图像库 )是Python编程语言的一个免费库,它支持打开、操作和保存许多不同的文件格式的图像。然而, 随着2009年的最后一次发布,它的开发停滞不前。但幸运的是还有有Pillow,一个PIL积极开发的且更容易安装的分支,它能运行在所有主要的操作系统,并支持Python3。这个库包含了基本的图像处理功能,包括点运算、使用一组内置卷积核的滤波和色彩空间的转换。

资源

文档中有安装说明,以及涵盖库的每个模块的示例:

https://pillow.readthedocs.io/en/3.1.x/index.html

用法

在 Pillow 中使用 ImageFilter 增强图像:

TB1SPtTeSSD3KVjSZFKXXb10VXa.png TB13aX3eG5s3KVjSZFNXXcD3FXa.jpg

  5. OpenCV-Python

OpenCV( 开源计算机视觉库 )是计算机视觉应用中应用最广泛的库之一 。OpenCV-Python 是OpenCV的python版API。OpenCV-Python的优点不只有高效,这源于它的内部组成是用C/C++编写的,而且它还容易编写和部署(因为前端是用Python包装的)。这使得它成为执行计算密集型计算机视觉程序的一个很好的选择。 

资源

OpenCV-Python-Guide指南可以让你使用OpenCV-Python更容易:

https://github.com/abidrahmank/OpenCV2-Python-Tutorials

用法

下面是一个例子,展示了OpenCV-Python使用金字塔方法创建一个名为“Orapple”的新水果图像融合的功能。  

TB1Dl4ReL1H3KVjSZFBXXbSMXXa.jpg

  6. SimpleCV

SimpleCV 也是一个用于构建计算机视觉应用程序的开源框架。有了它,你就可以访问几个高性能的计算机视觉库,如OpenCV,而且不需要先学习了解位深度、文件格式、颜色空间等。

它的学习曲线大大小于OpenCV,正如它们的口号所说“计算机视觉变得简单”。一些支持SimpleCV的观点有:

即使是初学者也可以编写简单的机器视觉测试  

摄像机、视频文件、图像和视频流都是可互操作的  

资源

官方文档非常容易理解,而且有大量的例子和使用案例去学习:

https://simplecv.readthedocs.io/en/latest/

用法

TB1bIXTeRWD3KVjSZFsXXcqkpXa.jpg

  7. Mahotas

Mahotas 是另一个计算机视觉和图像处理的Python库。它包括了传统的图像处理功能例如滤波和形态学操作以及更现代的计算机视觉功能用于特征计算,包括兴趣点检测和局部描述符。该接口是Python语言,适合于快速开发,但是算法是用C语言实现的,并根据速度进行了调优。Mahotas库速度快,代码简洁,甚至具有最小的依赖性。通过原文阅读它们的官方论文以获得更多的了解。  

资源

文档包括安装指导,例子,以及一些教程,可以更好的帮助你开始使用mahotas。

https://mahotas.readthedocs.io/en/latest/install.html

用法

Mahotas库依赖于使用简单的代码来完成任务。关于‘Finding Wally’的问题,Mahotas做的很好并且代码量很少。下面是源码:

https://mahotas.readthedocs.io/en/latest/wally.html

TB1uDJTeROD3KVjSZFFXXcn9pXa.jpg TB1rTRUeUuF3KVjSZK9XXbVtXXa.jpg

  8. SimpleITK

ITK 或者 Insight Segmentation and Registration Toolkit是一个开源的跨平台系统,为开发人员提供了一套广泛的图像分析软件工具 。其中, SimpleITK是建立在ITK之上的简化层,旨在促进其在快速原型设计、教育、解释语言中的应用。SimpleITK 是一个图像分析工具包,包含大量支持一般过滤操作、图像分割和匹配的组件。SimpleITK本身是用C++写的,但是对于包括Python以内的大部分编程语言都是可用的。

资源

大量的Jupyter Notebooks 表明了SimpleITK在教育和研究领域已经被使用。Notebook展示了用Python和R编程语言使用SimpleITK来进行交互式图像分析。 

http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/

用法

下面的动画是用SimpleITK和Python创建的刚性CT/MR匹配过程的可视化 。点击此处可查看源码!

TB1hulSeMmH3KVjSZKzXXb2OXXa.jpg

  9. pgmagick

pgmagick是GraphicsMagick库的一个基于python的包装。  GraphicsMagick图像处理系统有时被称为图像处理的瑞士军刀。它提供了一个具有强大且高效的工具和库集合,支持以88种主要格式(包括重要格式,如DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM和TIFF)读取、写入和操作图像。 

资源

有一个专门用于PgMagick的Github库 ,其中包含安装和需求说明。还有关于这个的一个详细的用户指导:

https://github.com/hhatto/pgmagick

用法

使用pgmagick可以进行的图像处理活动很少,比如:

图像缩放

TB1bIdTeRWD3KVjSZFsXXcqkpXa.jpg

边缘提取

TB1RCtTeR1D3KVjSZFyXXbuFpXa.jpg

  10. Pycairo

Pycairo是图像处理库cairo的一组Python捆绑。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或转换时不会失去清晰度 。Pycairo是cairo的一组绑定,可用于从Python调用cairo命令。

资源

Pycairo的GitHub库是一个很好的资源,有关于安装和使用的详细说明。还有一个入门指南,其中有一个关于Pycairo的简短教程。 

库:https://github.com/pygobject/pycairo

指南:https://pycairo.readthedocs.io/en/latest/tutorial.html

用法

使用Pycairo绘制线条、基本形状和径向梯度:

TB1XhRSeUKF3KVjSZFEXXXExFXa.png

  总结

有一些有用且免费的Python图像处理库可以使用,有的是众所周知的,有的可能对你来说是新的,试着多去了解它们。

注:本文的内容改编自作者之前在 opensource.com 上发表的文章。雷锋网雷锋网雷锋网(公众号:雷锋网)

想要继续查看该篇文章相关链接和参考文献?

点击【常用的十大 python 图像处理工具】即可访问:

https://ai.yanxishe.com/page/TextTranslation/1755

今日资源推荐:

TB1NWh3eG5s3KVjSZFNXXcD3FXa.png

49个Python学习资源收集!作者把它分解为4种形式:1、那些刚刚开始编程和Python的初学者资源;2、适用于那些希望将Python知识基础应用于数据科学和Web开发等领域的人员的进阶资源;3、为那些希望通过Python深入学习和大数据等概念的人提供高级资源;4、最后是最重要的练习计划,帮助你快速实践和巩固 Python 技能。

详情点击:https://ai.yanxishe.com/page/tweet/26516

目录
相关文章
|
1月前
|
缓存 API Python
Python中的装饰器:优雅而强大的函数增强工具
在Python编程中,装饰器是一种强大的工具,可以在不改变原函数代码的情况下,对函数进行增强和扩展。本文将介绍装饰器的基本概念、用法以及实际应用场景,帮助读者更好地理解并运用装饰器提升代码的可维护性和灵活性。
|
1月前
|
存储 开发工具 git
Python中的版本控制和代码协作工具
在Python项目中,版本控制和代码协作是非常重要的。最常用的版本控制工具是Git,而代码协作则通常通过Git配合代码托管平台(如GitHub、GitLab等)来实现。以下是一个基本的流程,说明如何使用Git进行版本控制以及如何通过GitHub进行代码协作。
|
5天前
|
机器学习/深度学习 人工智能 算法
图像处理与分析:Python中的计算机视觉应用
【4月更文挑战第12天】Python在计算机视觉领域广泛应用,得益于其丰富的库(如OpenCV、Pillow、Scikit-image)和跨平台特性。图像处理基本流程包括获取、预处理、特征提取、分类识别及重建生成。示例代码展示了面部和物体检测,以及使用GAN进行图像生成。
|
4天前
|
计算机视觉 Python
如何利用Python实现简单的图像处理功能
本文介绍了如何使用Python编程语言和相关库实现简单的图像处理功能。通过学习本文,读者将了解如何读取图像文件、调整图像大小、修改图像亮度和对比度、应用滤镜效果以及保存处理后的图像。这些技术将帮助读者快速入门图像处理领域,并为他们进一步探索更高级的图像处理技术打下基础。
|
5天前
|
测试技术 开发者 Python
Python中的装饰器:优雅而强大的函数修饰工具
在Python编程中,装饰器是一种强大的工具,用于修改函数或方法的行为。本文将深入探讨Python中装饰器的概念、用法和实际应用,以及如何利用装饰器实现代码的优雅和高效。
|
23天前
|
数据采集 搜索推荐 数据挖掘
使用Python制作一个批量查询搜索排名的SEO免费工具
最近工作中需要用上 Google SEO(搜索引擎优化),有了解过的朋友们应该都知道SEO必不可少的工作之一就是查询关键词的搜索排名。关键词少的时候可以一个一个去查没什么问题,但是到了后期,一个网站都有几百上千的关键词,你再去一个一个查,至少要花费数小时的时间。 虽然市面上有很多SEO免费或者收费工具,但免费的基本都不能批量查,网上免费的最多也就只能10个10个查询,而且查询速度很慢。收费的工具如Ahrefs、SEMrush等以月为单位收费最低也都要上百美刀/月,当然如果觉得价格合适也可以进行购买,毕竟这些工具的很多功能都很实用。今天我给大家分享的这个排名搜索工具基于python实现,当然肯定
37 0
|
23天前
|
XML Shell Linux
性能工具之 JMeter 使用 Python 脚本快速执行
性能工具之 JMeter 使用 Python 脚本快速执行
38 1
性能工具之 JMeter 使用 Python 脚本快速执行
|
23天前
|
数据可视化 数据挖掘 Python
Python中的数据可视化工具Matplotlib简介与实践
在本文中,我们将介绍Python中常用的数据可视化工具Matplotlib,包括其基本概念、常用功能以及实际应用。通过学习Matplotlib,读者可以更好地理解和运用数据可视化技术,提升数据分析与展示的能力。
|
27天前
|
Web App开发 前端开发 JavaScript
Python Selenium是一个强大的自动化测试工具
Python Selenium是一个强大的自动化测试工具
|
29天前
|
前端开发 JavaScript API
基于ElectronEgg&Python,从零开始打造一款免费的PDF桌面工具
基于ElectronEgg&Python,从零开始打造一款免费的PDF桌面工具

热门文章

最新文章