Spark学习之Spark调优与调试(7)

  1. 云栖社区>
  2. 博客>
  3. 正文

Spark学习之Spark调优与调试(7)

王小雷 2016-01-19 14:54:00 浏览909
展开阅读全文

Spark学习之Spark调优与调试(7)

1. 对Spark进行调优与调试通常需要修改Spark应用运行时配置的选项。

当创建一个SparkContext时就会创建一个SparkConf实例。

2. Spark特定的优先级顺序来选择实际配置:

优先级最高的是在用户代码中显示调用set()方法设置选项;
其次是通过spark-submit传递的参数;
再次是写在配置文件里的值;
最后是系统的默认值。

3.查看应用进度信息和性能指标有两种方式:网页用户界面、驱动器和执行器进程生成的日志文件。

4.Spark执行的组成部分:作业、任务和步骤

需求:使用Spark shell完成简单的日志分析应用。
scala> val input =sc.textFile("/home/spark01/Documents/input.text")
input: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[3] at textFile at <console>:27

scala> val tokenized = input.map(line=>line.split(" ")).filter(words=>words.size>0)
tokenized: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[5] at filter at <console>:29

scala> val counts = tokenized.map(words=>(words(0),1)).reduceByKey{(a,b)=>a+b}
counts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[7] at reduceByKey at <console>:31

scala> // see RDD

scala> input.toDebugString
res0: String = 
(1) MapPartitionsRDD[3] at textFile at <console>:27 []
 |  /home/spark01/Documents/input.text HadoopRDD[2] at textFile at <console>:27 []

scala> counts.toDebugString
res1: String = 
(1) ShuffledRDD[7] at reduceByKey at <console>:31 []
 +-(1) MapPartitionsRDD[6] at map at <console>:31 []
    |  MapPartitionsRDD[5] at filter at <console>:29 []
    |  MapPartitionsRDD[4] at map at <console>:29 []
    |  MapPartitionsRDD[3] at textFile at <console>:27 []
    |  /home/spark01/Documents/input.text HadoopRDD[2] at textFile at <console>:27 []

scala> counts.collect()
res2: Array[(String, Int)] = Array((ERROR,1), (##input.text##,1), (INFO,4), ("",2), (WARN,2))

scala> counts.cache()
res3: counts.type = ShuffledRDD[7] at reduceByKey at <console>:31

scala> counts.collect()
res5: Array[(String, Int)] = Array((ERROR,1), (##input.text##,1), (INFO,4), ("",2), (WARN,2))

scala>

5. Spark网页用户界面

默认情况地址是http://localhost:4040
通过浏览器可以查看已经运行过的作业(job)的详细情况
如图下图:

所有任务
图1所有任务用户界面
这里写图片描述
图二作业2详细信息用户界面

6. 关键性能考量:

代码层面:并行度、序列化格式、内存管理
运行环境:硬件供给。

网友评论

登录后评论
0/500
评论
王小雷
+ 关注