Nmslib高维空间最近邻逼近搜索算法介绍

简介: 业务场景上一次介绍图像搜索的基本原理,现在记录下使用的数据包的问题。查询图片先进行特征提取,使用一个向量来表示,之后使用该向量与数据库中所有的商品向量进行计算相似度指标,比如cos距离,欧式距离,汉明距离。

业务场景

上一次介绍图像搜索的基本原理,现在记录下使用的数据包的问题。
查询图片先进行特征提取,使用一个向量来表示,之后使用该向量与数据库中所有的商品向量进行计算相似度指标,比如cos距离,欧式距离,汉明距离。
具体的取决于向量的形式,有的先用cnn提取特征向量,可以计算其cos距离,有的提取之后对其进行哈希编码,先用汉明距离进行粗排,之后按照欧式距离进行重排。
这里就面临这样的一个问题:

  • 特征向量一般都是高维,使用暴力算法计算相似度的话会非常耗时,满足不了实际应用场景;

没有等你算完,使用者的心就哇凉哇凉的,没有耐心等待的,而使用淘宝拍立淘的时候,响应速度非常快,用户体验很好!
这个时候就需要考虑使用一些快速计算的方法——ANN。

ANN

一看到ANN,第一反应应该是人工神经网络,这里是Approximate Nearest Neighbor,近似邻居算法。
关于这方面的算法有很多,比如Annoyscikit-learnhnswlib, nmslib等等。
几乎所有的ANN方法都是对全空间的划分,大多数使用的树模型,详细的介绍可以上网查询一下,这里介绍本人使用过的nmslib包讲解。

NMSLIB

项目地址:https://github.com/nmslib/nmslib
非度量空间库(NMSLIB)是一种高效的跨平台相似性搜索库和用于评估相似性搜索方法的工具包。核心库并没有任何第三方依赖。
NMSLIB是一个可扩展的库,这意味着可以添加新的搜索方法和距离函数。NMSLIB可以直接在C ++和Python中使用。此外,还可以构建一个查询服务器,可以从Java(或Apache Thrift支持的其他语言)中使用。
这里介绍python的使用方法。

实例

import nmslib as nms

## 构建索引
index = nms.init(method='hnsw', space='cosinesimil')
__index = {}
product_dict_path = JSON_PATH + '/product_cv.json'
with open(product_dict_path, 'r') as f:
    for line in f:
         pid, feat = line.strip('\n').split('\t')
         # init knn data frame
         __index.setdefault(pid, json.loads(feat))
         index.addDataPoint(pid, json.loads(feat))
        # set knn parameter
        INDEX_TIME_PARAMS = {
            'indexThreadQty': 10,
            'M': 100,
            'efConstruction': 2000,
            'post': 2}
        index.createIndex(self.INDEX_TIME_PARAMS)
        
## 使用
pids_index, distance = index.knnQuery(q_feat, k)
AI 代码解读

上述代码只是片段,详细讲解下各个参数的设置

  • method : `hnsw'方法;
  • space: 'cosinesimil'空间;
  • INDEX_TIME_PARAMS: 详细参数

关于参数的设置可以见

参考

目录
相关文章
算法系列之搜索算法-深度优先搜索DFS
深度优先搜索和广度优先搜索一样,都是对图进行搜索的算法,目的也都是从起点开始搜索,直到到达顶点。深度优先搜索会沿着一条路径不断的往下搜索,直到不能够在继续为止,然后在折返,开始搜索下一条候补路径。
114 62
算法系列之搜索算法-深度优先搜索DFS
|
2月前
|
算法系列之搜索算法-广度优先搜索BFS
广度优先搜索(BFS)是一种非常强大的算法,特别适用于解决最短路径、层次遍历和连通性问题。在面试中,掌握BFS的基本实现和应用场景,能够帮助你高效解决许多与图或树相关的问题。
86 1
算法系列之搜索算法-广度优先搜索BFS
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
二分搜索:高效的查找算法
【10月更文挑战第29天】通过对二分搜索的深入研究和应用,我们可以不断挖掘其潜力,为各种复杂问题提供高效的解决方案。相信在未来的科技发展中,二分搜索将继续发挥着重要的作用,为我们的生活和工作带来更多的便利和创新。
100 1
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
108 2
|
8月前
|
【算法】递归、搜索与回溯——汉诺塔
【算法】递归、搜索与回溯——汉诺塔
110 1
|
8月前
|
【算法】递归、搜索与回溯——简介
【算法】递归、搜索与回溯——简介

热门文章

最新文章