用户端智能在蚂蚁财富的应用实践

  1. 云栖社区>
  2. 博客>
  3. 正文

用户端智能在蚂蚁财富的应用实践

bang590 2019-03-26 11:30:32 浏览590
展开阅读全文

去年团队在用户端上进行了一些简单的智能应用探索实践,这里记录梳理下。

现在很多“智能”,是普通推荐算法借深度学习的风包装的,核心也就是决策树/随机森林/SVM这些90年代已经提出的算法,我们这里的实践也是这样。在用户端上,智能应用最广泛的目前两个点:个性化和多媒体识别,我们主要实践是在个性化上,从原来所有用户都用同一套或几套规则,换成根据推荐算法给每个用户制定符合他个性化特征的不同规则。

实际上简单的个性化推荐也可以认为是规则,只是这个规则很复杂,里面的if/else/权重/概率计算不是人工写的,而是算法算出来的,大多采用监督学习的方式,这种需求大体实现步骤是:

  1. 建模,把问题转化为三个点:输入/输出/算法。也就是挑选特征集X,确定输出目标值标签Y,挑选算法尝试找出Y=f(X)。
  2. 取数,选择一坨线上数据,清洗出需要的特征和对应的目标值。
  3. 训练

网友评论

登录后评论
0/500
评论
bang590
+ 关注