【最全资料下载】Python 系列直播——深入Python与日志服务,玩转大规模数据分析处理实战

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 直播讲师:丁来强(成喆)——阿里高级技术专家,从事阿里云日志服务相关的产品与研发工作,擅长AIOps/SecOps的大数据分析平台构建与场景落地,擅长C++与Python语言等。PyCon历届讲师,曾经在中国PyCon2015、2016与2018分享过7场/6个不同议题,覆盖Jupyter扩展、大数据分析可视化、工作流调度、函数式、设计模式、Python核心语言等方面,广受好评。

直播讲师:丁来强(成喆)——阿里高级技术专家,从事阿里云日志服务相关的产品与研发工作,擅长AIOps/SecOps的大数据分析平台构建与场景落地,擅长C++与Python语言等。
PyCon历届讲师,曾经在中国PyCon2015、2016与2018分享过7场/6个不同议题,覆盖Jupyter扩展、大数据分析可视化、工作流调度、函数式、设计模式、Python核心语言等方面,广受好评。

第一讲——使用IPython/Jupyter Notebook与日志服务玩转超大规模数据分析与可视化

直播介绍:IPython/Jupyter Notebook非常流行,但随着数据量越来越大(例如几百亿条电商平台访问日志),如何继续保持灵活的交互式分析,是一个挑战。阿里云日志服务作为阿里商业操作系统的智能运维平台,无需开发就能快捷完成海量日志数据的采集、消费、投递以及查询分析等功能。这里介绍如何借助日志服务对IPython/Jupyter扩展的功能,用Python对海量数据进行深度加工(ETL)、交互式分析(通过SQL、DataFrame)、机器学习与可视化等。

PPT下载:https://yq.aliyun.com/download/3322
直播回顾:https://yq.aliyun.com/live/875


第二讲——流畅的Python数据处理及大数据处理ETL

直播时间:3月6日(周三)20:00—21:00

直播介绍:大数据分析中常常要对数据进行规整(ETL),而Python内置强大的数据结构以及语法(如推导式、切片、函数式编程等)对于数据处理又非常友好。本节介绍如何灵活、流畅地使用这些特性,在日志服务场景中对大规模不规则日志进行常规ETL操作。

PPT下载:https://yq.aliyun.com/download/3338
直播回顾:https://yq.aliyun.com/live/910


第三讲—— Python3舒适性编程与兼容Py2/3实践

直播时间:3月13日(周三)20:00—21:00

直播介绍:Python3有许多“舒适编程”的特性,而Python2也即将EOL,但Py2/Py3并存的局面可预见的还是会保持一段时间。本节介绍Py3一些不错亮点,以及如何兼顾Py2/Py3的一些实践。

ppt下载:https://yq.aliyun.com/download/3344
视频回顾:https://yq.aliyun.com/live/918


第四讲——Python并发编程与实时大数据处理监控

直播时间:3月20日(周三)20:00—21:00

直播介绍: Python多线程、多进程编程该如何做?如何避开GIL?本节以日志服务消费组模型为例,介绍相关原理实践以及如何做实时大数据的处理与监控。

ppt下载:https://yq.aliyun.com/download/3389
直播回顾:https://yq.aliyun.com/live/932


第五讲——Python日志最佳实践与日志上云实战

直播时间:3月27日(周三)20:00—21:00

直播介绍:良好的日志实践可以帮助后续的开发排错、运营维护监控管理工作大大提高效率,本节介绍使用Python的日志模块的最佳实践,并轻松上云,利用日志服务提高产品运维效率。

PPT链接:https://yq.aliyun.com/download/3469
视频回顾:https://yq.aliyun.com/live/949


第六讲——改造Python对象模块的实用技巧及日志服务ETL插件原理
直播时间:4月3日(周三)20:00—21:00

直播介绍: Python作为动态语言,插件与模块机制非常强大,在编写框架类程序时尤其有用,本节深入浅出的介绍Python的语言扩展能力,以及日志服务中的CLI插件机制原理。

资料下载:https://yq.aliyun.com/download/3483
直播回顾:https://yq.aliyun.com/live/969

欢迎加入python技术进阶钉群收看直播及往期回顾


_2019_01_15_10_28_39


或点击链接:http://tb.cn/UQkRRHw

  • 详情

4a7942c6_3fb4_4b6f_aa32_2884dfbe7f36

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
打赏
0
0
0
2
2310
分享
相关文章
JVM实战—7.如何模拟GC场景并阅读GC日志
本文主要介绍了:如何动手模拟出频繁Young GC的场景、JVM的Young GC日志应该怎么看、编写代码模拟动态年龄判定规则进入老年代、编写代码模拟S区放不下部分进入老年代、JVM的Full GC日志应该怎么看。
JVM实战—7.如何模拟GC场景并阅读GC日志
Python实战:搭建短信转发器,实现验证码自动接收与处理
在移动互联网时代,短信验证码是重要的安全手段,但手动输入效率低且易出错。本文介绍如何用Python搭建短信转发器,实现验证码自动接收、识别与转发。通过ADB工具监听短信、正则表达式或ddddocr库提取验证码,并利用Flask框架转发数据。系统支持多设备运行,具备安全性与性能优化功能,适合自动化需求场景。未来可扩展更多功能,提升智能化水平。
44 1
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
1688平台API接口实战:Python实现店铺全量商品数据抓取
本文介绍如何使用Python通过1688开放平台的API接口自动化抓取店铺所有商品数据。首先,开发者需在1688开放平台完成注册并获取App Key和App Secret,申请“商品信息查询”权限。接着,利用`alibaba.trade.product.search4trade`接口,构建请求参数、生成MD5签名,并通过分页机制获取全量商品数据。文中详细解析了响应结构、存储优化及常见问题处理方法,还提供了竞品监控、库存预警等应用场景示例和完整代码。
Python 高级编程与实战:构建微服务架构
本文深入探讨了 Python 中的微服务架构,介绍了 Flask、FastAPI 和 Nameko 三个常用框架,并通过实战项目帮助读者掌握这些技术。每个框架都提供了构建微服务的示例代码,包括简单的 API 接口实现。通过学习本文,读者将能够使用 Python 构建高效、独立的微服务。
PYTHON实战两数之和
1. 两数之和 难度:简单 收藏 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返回答案。
221 0
PYTHON实战两数之和
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
53 28

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等