Tensorflow源码解析1 -- 内核架构和源码结构

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: # 1 主流深度学习框架对比 当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层。比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android Framework。深度学习也不例外,框架层为上层模型开发提供了强大的多语言接口、稳定的运行时、高效的算子,以及完备的通信层和设备层管理层。因此,各大公司早早的就开始了深度学习框架的研

1 主流深度学习框架对比

当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层。比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android Framework。深度学习也不例外,框架层为上层模型开发提供了强大的多语言接口、稳定的运行时、高效的算子,以及完备的通信层和设备层管理层。因此,各大公司早早的就开始了深度学习框架的研发,以便能占领市场。当前的框架有数十种之多,主流的如下(截止到2018年11月)

显然TensorFlow是独一无二的王者。第二名Keras,它是对TensorFlow或Theano接口的二次封装,严格意义上并不是一个独立的深度学习框架。TensorFlow目前也已经集成了Keras,使得安装了TensorFlow的用户就可以直接使用Keras了。

TensorFlow之所以能够从数十种框架中脱颖而出,主要优点有

  1. 出身高贵,是谷歌出品的。但其他很多框架出身也不差,例如PyTorch之于Facebook,MXNET之于Amazon
  2. 2015年就开源了,比较早的俘获了一大批开发者。这个确实是tf的一大先发优势,但PyTorch的前身Caffe,以及MXNET开源时间都不晚,而且Caffe流行时间比tf早,后来才被赶超的。更有Theano这样的绝对老前辈。由此可见,软件开源是多么重要。目前流行的深度学习框架也基本都开源了。
  3. 支持的开发语言多,支持Python Java Go C++等多种流行语言。相比某些框架,确实是优势很大。相比MXNET则小巫见大巫了。MXNET早期发展的一个主要方向就是前端多语言的支持,连MATLAB R Julia等语言都支持了。
  4. 运行效率高。早期的时候,其实tf的运行效率比很多框架都要低一些的。
  5. 安装容易,用户上手快,文档齐全,社区活跃。这个是tf的一个较大优势,特别是社区方面,也就是我们常说的生态优势。互联网头部集中效应十分明显,体现在开源软件上也是一样。这也是我认为最大的一个优势。

总结起来,TensorFlow虽然每个方面都不是绝对领先的优势,但贵在每个方面都做的不错,因此最终能够一骑绝尘,独领风骚。

学习Tensorflow框架内核,可以理解前端接口语言的支持,session生命周期,graph的构建、分裂和执行,operation的注册和运行,模块间数据通信,本地运行和分布式运行模式,以及CPU GPU TPU等异构设备的封装支持等。学习这些,对于模型的压缩 加速 优化等都是大有裨益的。

2 TensorFlow系统架构

TensorFlow设计十分精巧,基于分层和模块化的设计思想进行开发的。框架如下图

整个框架以C API为界,分为前端和后端两大部分。

  1. 前端:提供编程模型,多语言的接口支持,比如Python Java C++等。通过C API建立前后端的连接,后面详细讲解。
  2. 后端:提供运行环境,完成计算图的执行。进一步分为4层

    1. 运行时:分为分布式运行时和本地运行时,负责计算图的接收,构造,编排等。
    2. 计算层:提供各op算子的内核实现,例如conv2d, relu等
    3. 通信层:实现组件间数据通信,基于GRPC和RDMA两种通信方式
    4. 设备层:提供多种异构设备的支持,如CPU GPU TPU FPGA等

模型构造和执行流程

TensorFlow的一大特点是,图的构造和执行相分离。用户添加完算子,构建好整图后,才开始进行训练和执行,也就是图的执行。大体流程如下

  1. 图构建:用户在client中基于TensorFlow的多语言编程接口,添加算子,完成计算图的构造。
  2. 图传递:client开启session,通过它建立和master之间的连接。执行session.run()时,将构造好的graph序列化为graphDef后,以protobuf的格式传递给master。
  3. 图剪枝:master根据session.run()传递的fetches和feeds列表,反向遍历全图full graph,实施剪枝,得到最小依赖子图
  4. 图分裂:master将最小子图分裂为多个Graph Partition,并注册到多个worker上。一个worker对应一个Graph Partition。
  5. 图二次分裂:worker根据当前可用硬件资源,如CPU GPU,将Graph Partition按照op算子设备约束规范(例如tf.device('/cpu:0'),二次分裂到不同设备上。每个计算设备对应一个Graph Partition。
  6. 图运行:对于每一个计算设备,worker依照op在kernel中的实现,完成op的运算。设备间数据通信可以使用send/recv节点,而worker间通信,则使用GRPC或RDMA协议。

3 前端多语言实现 - swig包装器

TensorFlow提供了很多种语言的前端接口,使得用户可以通过多种语言来完成模型的训练和推断。其中Python支持得最好。这也是TensorFlow之所以受欢迎的一大原因。前端多语言是怎么实现的呢?这要归功于swig包装器。

swig是个帮助使用C或者C++编写的软件能与其它各种高级编程语言进行嵌入联接的开发工具。在TensorFlow使用bazel编译时,swig会生成两个wrapper文件

  1. pywrap_tensorflow_internal.py:对接上层Python调用
  2. pywrap_tensorflow_internal.cc:对接底层C API调用。

pywrap_tensorflow_internal.py 模块被导入时,会加载_pywrap_tensorflow_internal.so动态链接库,它里面包含了所有运行时接口的符号。而pywrap_tensorflow_internal.cc中,则注册了一个函数符号表,实现Python接口和C接口的映射。运行时,就可以通过映射表,找到Python接口在C层的实现了。

4 tensorflow 源码结构

TensorFlow源码基本也是按照框架分层来组织文件的。如下

其中core为tf的核心,它的源码结构如下

5 总结

TensorFlow框架设计精巧,代码量也很大,我们可以从以下部分逐步学习

  1. TensorFlow内核架构和源码结构。先从全局上对框架进行理解。
  2. 前后端连接的桥梁--Session,重点理解session的生命周期,并通过相关源码可以加深理解Python前端如何调用底层C实现。
  3. TensorFlow核心对象—Graph。图graph是TensorFlow最核心的对象,基本都是围绕着它来进行的。graph的节点为算子operation,边为数据tensor。
  4. TensorFlow图的节点 -- Operation。operation是图graph的节点,承载了计算算子。
  5. TensorFlow图的边 -- Tensor。Tensor是图graph的边,承载了计算的数据。
  6. TensorFlow本地运行时。
  7. TensorFlow分布式运行时。和本地运行时有一些共用的接口,但区别也很大。
  8. TensorFlow设备层。主要了解设备层的定义规范,以及实现。
  9. TensorFlow队列和并行运算。
  10. TensorFlow断点检查checkpoint,模型保存Saver,以及可视化tensorboard。这三个为TensorFlow主要的工具。
目录
相关文章
|
15天前
|
数据采集 JSON 数据可视化
JSON数据解析实战:从嵌套结构到结构化表格
在信息爆炸的时代,从杂乱数据中提取精准知识图谱是数据侦探的挑战。本文以Google Scholar为例,解析嵌套JSON数据,提取文献信息并转换为结构化表格,通过Graphviz制作技术关系图谱,揭示文献间的隐秘联系。代码涵盖代理IP、请求头设置、JSON解析及可视化,提供完整实战案例。
JSON数据解析实战:从嵌套结构到结构化表格
|
17天前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
55 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
8天前
|
存储 机器学习/深度学习 应用服务中间件
阿里云服务器架构解析:从X86到高性能计算、异构计算等不同架构性能、适用场景及选择参考
当我们准备选购阿里云服务器时,阿里云提供了X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等多种架构,每种架构都有其独特的特点和适用场景。本文将详细解析这些架构的区别,探讨它们的主要特点和适用场景,并为用户提供选择云服务器架构的全面指南。
|
2天前
|
算法 前端开发 定位技术
地铁站内导航系统解决方案:技术架构与核心功能设计解析
本文旨在分享一套地铁站内导航系统技术方案,通过蓝牙Beacon技术与AI算法的结合,解决传统导航定位不准确、路径规划不合理等问题,提升乘客出行体验,同时为地铁运营商提供数据支持与增值服务。 如需获取校地铁站内智能导航系统方案文档可前往文章最下方获取,如有项目合作及技术交流欢迎私信我们哦~
25 1
|
17天前
|
传感器 监控 Java
Java代码结构解析:类、方法、主函数(1分钟解剖室)
### Java代码结构简介 掌握Java代码结构如同拥有程序世界的建筑蓝图,类、方法和主函数构成“黄金三角”。类是独立的容器,承载成员变量和方法;方法实现特定功能,参数控制输入环境;主函数是程序入口。常见错误包括类名与文件名不匹配、忘记static修饰符和花括号未闭合。通过实战案例学习电商系统、游戏角色控制和物联网设备监控,理解类的作用、方法类型和主函数任务,避免典型错误,逐步提升编程能力。 **脑图速记法**:类如太空站,方法即舱段;main是发射台,static不能换;文件名对仗,括号要成双;参数是坐标,void不返航。
45 5
|
1月前
|
存储 人工智能 并行计算
2025年阿里云弹性裸金属服务器架构解析与资源配置方案
🚀 核心特性与技术创新:提供100%物理机性能输出,支持NVIDIA A100/V100 GPU直通,无虚拟化层损耗。网络与存储优化,400万PPS吞吐量,ESSD云盘IOPS达100万,RDMA延迟<5μs。全球部署覆盖华北、华东、华南及海外节点,支持跨地域负载均衡。典型应用场景包括AI训练、科学计算等,支持分布式训练和并行计算框架。弹性裸金属服务器+OSS存储+高速网络综合部署,满足高性能计算需求。
|
1月前
|
传感器 监控 安全
智慧工地云平台的技术架构解析:微服务+Spring Cloud如何支撑海量数据?
慧工地解决方案依托AI、物联网和BIM技术,实现对施工现场的全方位、立体化管理。通过规范施工、减少安全隐患、节省人力、降低运营成本,提升工地管理的安全性、效率和精益度。该方案适用于大型建筑、基础设施、房地产开发等场景,具备微服务架构、大数据与AI分析、物联网设备联网、多端协同等创新点,推动建筑行业向数字化、智能化转型。未来将融合5G、区块链等技术,助力智慧城市建设。
|
9天前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
54 29
|
5天前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
23 3
|
7天前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

热门文章

最新文章

推荐镜像

更多