线性回归机器学习算法介绍

  1. 云栖社区>
  2. Python中文社区>
  3. 博客>
  4. 正文

线性回归机器学习算法介绍

技术小能手 2019-01-09 13:55:02 浏览1530
展开阅读全文

在解释什么是线性回归之前,我们先举个例子!

假设我们已知m个样本,样本里有n个特征x,和对应的输出y。表达式如下:

image

现在出现了一个新的数据集

image

需要预测它对应的输出y是多少。

首先我们需要知道的是,如果输出y是连续的,则是回归问题,否则是分类问题。
如果是分类问题,那我们应该对前面的m个样本拟合,建立类似以下形式的线性方程:

image

这样,我们就可以对新的数据集做出预测,求出对应的y值啦。当然,对于拟合出来的函数,并不能做到100%准确预测。现实的情况更多的是下图表示的情况

image

好了,以上就是线性回归啦。
为了方便出去跟朋友装逼,我们用专业属于概括就是:
利用数理统计中的回归分析,来确定两种或者两种以上变量间相互依赖的定量关系的一种统计分析方法。线性回归可以说是机器学习中最基本的算法了。

一、线性回归的目标

1,评估预测变量y在解释反应变量x的变异或表现时的显著性。

网友评论

登录后评论
0/500
评论
技术小能手
+ 关注
所属云栖号: Python中文社区