深度学习都需要了解什么?无从下手的话,可以看看这份深度学习速查表

简介: 本文介绍了一些深度学习中的常见概念,如梯度、后向传播、ReLU、Dropout、交叉熵与softmax等,以帮助大家快速了解深度学习。

初次接触深度学习时,大家可能会感到无从下手。这里有一些有关深度学习的技巧和要点可供大家参考。

这些都是什么?

在本篇文章,我们将介绍一些深度学习中的常见概念,以帮助大家快速了解这个神奇的领域。


66c4d07e990bf9176b1793decec1ed025861d49e

梯度可视化。图中红色箭头为蓝色函数对应的梯度。


梯度∇ (Nabla)

梯度是一个函数的偏导数,以多个向量作为输入,并输出一个单一的数值(即神经网络中的代价函数)。当我们需要使函数输出增加时,梯度能够告诉我们输入变量在图中的应变化的方向。我们在深度学习中应用梯度,并使用梯度的反方向来降低我们算法的损失。

后向传播

也称为反向传播,是指在网络中正向传播输入数据之后,反向传播误差并根据误差调整网络权重的过程。这种方法在实际应用时使用了微积分中的链式法则。

Sigmoid σ

用于将网络权重映射至[0, 1]区间的激活函数。该函数在图中的曲线类似一个字母'S',函数因此得名,在希腊语中sigma表示字母S。该函数也被称为logistic函数。


ac34b4a939e5938615ad3ef304001a65dfd550b1

Geoffrey Hinton定义的ReLU计算公式


校正线性单元或ReLU

sigmoid函数的值域限制在[0, 1]区间内,而ReLU的值域为0到正无穷。这意味着,sigmoid更适合logistic回归,而ReLU能够更好地表示正数输出。ReLU不会产生梯度消失问题。


ee92ba69b64dba8654d9748017737edb2ac34bb9

Tanh函数


Tanh

Tanh函数是一个可将你的网络权重初始化为[-1, 1]区间内实数的函数。假设你的数据已经规范化,那么我们会得到一个更大的梯度:因为数据以0为中心分布,函数的导数更高。为了验证这点,我们计算tanh函数的导数,并观察函数在[0, 1]区间内的输入。tanh函数的值域为[-1, 1]区间,而sigmoid函数的值域为[0, 1]区间。这也避免了在梯度中的偏差。


1298617056666ca3cf57818a351c1801b703f772

LSTM/GRU

通常应用于递归神经网络,也可扩展至其他场景使用,其充当小型"记忆单元",能够保持输入数据间的状态,用于模型训练,同时,也可解决梯度消失问题,梯度消失问题会导致递归神经网络在进行大约7次迭代后失去先前输入数据的上下文。

Softmax

Softmax函数通常在神经网络的最后用于模型结果的分类。该函数采用多元logistic回归,通常用于多类别的分类任务。Softmax函数通常与交叉熵共同构成模型的损失函数。

L1范式与L2范式

这些正则化方法通过对系数施加惩罚以避免过拟合。L1范式可产生稀疏模型,而L2范式则不会。范式用于指定模型的复杂度。这至关重要,因为它能够提高模型的泛化能力,防止模型对训练数据过拟合。


db4da18747dc8e8b6d9fac433484d4bc32c9f4e4

Dropout

[1]"它防止模型过拟合,并提供了一种有效的方式,来联合不同的数量接近指数级的神经网络架构"(Hinton)。这种方法在网络中随机选择并剔除显式和隐含的神经元。选择的神经元数量取决于该层设置的dropout百分比。

批规范化

[1]当模型网络层数很深时,会出现内部协变量偏移的问题。这种偏移是指"训练期间网络参数变化所导致的网络输出分布的变化" (Szegedy)。如果我们可以减少内部协变量偏移,那么我们就可以更好更快地训练模型。批规范化通过使用均值与方差对传入网络的各批数据进行规范化处理,进而解决此类问题。

目标函数

也称为损失函数或评价优化函数。网络训练的目的在于最小化损失以最大化网络精度。

F1/F分数

F1/F分数是一种根据准确率与召回率来评估模型预测精度的评价指标,计算公式如下:

F1 = 2 (准确率 召回率) / (准确率 + 召回率)

准确率:在所有预测结果中,预测正确的结果比例为多少?

准确率 = 真阳性结果数 / (真阳性结果数 + 假阳性结果数)

召回率:在所有实际正确的结果中,预测出来的正确结果的比例为多少?

召回率 = 真阳性结果数 / (真阳性结果数 + 假阴性结果数)

交叉熵

交叉熵用于计算预测标签与实际情况的偏差。有时简称为CE。


d71ff6a7c8beffad30f1c224a92752456b05842a

交叉熵是一种损失函数,与热力学中熵的概念相关。交叉熵用于多类别分类场景下预测误差的计算。

本文介绍的内容可能不够全面,如果有任何您觉得有必要补充的内容,欢迎您与我联系。

[1] * 参考自: InflationAaron
数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!
以上为译文

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《Deep Learning Cheat Sheet》,作者:Camron Godbout,译者:6816816151

文章为简译,更为详细的内容,请查看原文

目录
打赏
0
0
0
0
1807
分享
相关文章
确定不收藏?十张机器学习和深度学习工程师必备速查表!
本文讲的是十张机器学习和深度学习工程师必备速查表,<对于初学者,机器学习和深度学习课程会很困难,此外各类深度学习库也十分难理解。我在Github上创建了一个本地库(https://github.com/kailashahirwar/cheatsheets-ai ),里面包含了从不同渠道收集的速查表,可以直接下载。
3229 0
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
124 22
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
283 6
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
94 40
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
129 6
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
164 19
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
148 7

热门文章

最新文章