C# 实现寻峰算法的简单优化(包含边峰,最小峰值,峰距)

简介: 原文:C# 实现寻峰算法的简单优化(包含边峰,最小峰值,峰距)  核心寻峰算法的原理参考Ronny,链接:投影曲线的波峰查找, C#翻译原理代码参考sowhat4999,链接:C#翻译Matlab中findpeaks方法  前人种树,后人乘凉。
原文: C# 实现寻峰算法的简单优化(包含边峰,最小峰值,峰距)

 

核心寻峰算法的原理参考Ronny,链接:投影曲线的波峰查找

C#翻译原理代码参考sowhat4999,链接:C#翻译Matlab中findpeaks方法 

前人种树,后人乘凉。感谢原作者详细的解释说明。

 

 

 

这里先把翻译代码贴一下(略微的修改了sowhat4999代码中的几个参数)

//调用方法
List<double> data = new List<double>{25, 8, 15, 5, 6, 10, 10, 3, 1, 20, 7};
List<int> index = getPeaksIndex(trendSign(oneDiff(Constant.data)));

//第一次寻峰(基本峰距为1)算法
private double[] oneDiff(List<double> data)
{
     double[] result = new double[data.Count - 1];
     for (int i = 0; i < result.Length; i++)
     {
          result[i] = data[i + 1] - data[i];
     }
     return result;
}

private int[] trendSign(double[] data)
{
     int[] sign = new int[data.Length];
     for (int i = 0; i < sign.Length; i++)
     {
          if (data[i] > 0) sign[i] = 1;
          else if (data[i] == 0) sign[i] = 0;
          else sign[i] = -1;
     }

     for (int i = sign.Length - 1; i >= 0; i--)
     {
          if (sign[i] == 0 && i == sign.Length - 1)
          {
               sign[i] = 1;
          }
          else if (sign[i] == 0)
          {
               if (sign[i + 1] >= 0)
               {
                    sign[i] = 1;
               }
               else
               {
                    sign[i] = -1;
               }
          }
      }
      return sign;
}

private List<int> getPeaksIndex(int[] diff)
{
     List<int> data = new List<int>();
     for (int i = 0; i != diff.Length - 1; i++)
     {
          if (diff[i + 1] - diff[i] == -2)
          {
              data.Add(i + 1);
          }
     }
     return data;//相当于原数组的下标
}

 

以上方法并没有将峰距、边锋、峰值情况考虑在内,但已经给与我们后人一个完整的思路。

峰距情况分析:

我们可以将上述方法理解为峰距1的寻峰算法,当我们需要完成峰距为2的寻峰情况时我们需要判断

data[i]是否大于data[i+1],data[i+2],data[i-1],data[i-2]

同理按照此方法完成点数为100000,峰距为1000的寻峰,则需要进行100000的1000次方次运算,这显然需要花费大量的时间进行运算。

优化过程中,我们并不能改变峰距(即幂指数1000),但我们可以改变点数(即底数100000)的大小。从而实现运算量的降低。

 

 以上峰距为1的寻峰方法此时已经完成判断

data[i]是否大于data[i+1],data[i-1]

并返还峰值对应的索引列

 

峰距为2时,我们只需要再次对索引列中内容进行判断即可(只有在峰距为1的判断中胜出的点,才有可能在峰距为2的判断中胜出)

data[i]是否大于data[i+2],data[i-2]

此时你会发现我们需要遍历的底数已经并不是原点数100000,而是上次返还的寻峰序列个数

 

            //调用方法
            List<double> data = new List<double>{25, 8, 15, 5, 6, 10, 10, 3, 1, 20, 7};
            //峰距
            int DisPeak = 3// 峰距为1时得到的脚标
            List<int> index =getPeaksIndex(trendSign(oneDiff(Yaxis)));
            //已进行的判断
            int level = 1;
            // 扩大峰距范围范围算法
            while (DisPeak > level)
            {
                level++;
                List<int> result = DoPeakInstance(data, index, level);
                index = null;
                index = result;
            }

 

//扩大寻峰范围算法
private List<int> DoPeakInstance(List<double> data, List<int> index, int level)
{
     //相当于原数组的下标
     List<int> result = new List<int>();
     for (int i = 0; i < index.Count; i++)
     {
          //判断是否超出下界和上界
          if (index[i] - level>=0&&index[i] + level < data.Count)
          {
               if (data[index[i] + level] <= data[index[i]] && data[index[i] - level] <= data[index[i]])
               {
                    result.Add(index[i]);
               }
           }
      }
      return result;
}

 

 边锋情况分析:

仔细阅读上述两算法,你会发现该算法存在一个无法避免的问题 如:

峰距是3,此时峰首部点序(点0,点1,点2)因无法向前比较,导致并没有参与到峰值计算中。 尾部点则因无法向后比较没有参与到峰值计算中。

此情况我们首先要清楚,因上述情况未参与比较的点序中,首部最多仅有一个峰值,尾部最多仅有一个峰值。

那我们把它加上就好了,美滋滋。

            //获取数据首尾两侧最大峰值(0,DisPeak)点序和(Date.CountFJ-DisPeak,Data.Count)点序
            int TopIndex = 0;
            int BottomIndex = Yaxis.Count-1;
            for (int i = 0; i < DisPeak; i++)
            {
                if (Yaxis[i] >= Yaxis[TopIndex])
                {
                    TopIndex = i;
                }
                if (Yaxis[Yaxis.Count-1 - i] >= Yaxis[BottomIndex])
                {
                    BottomIndex = Yaxis.Count - 1 - i;
                }
            }
            //判断是否满足条件检索条件(首部向后点进行比较,尾部向前点进行比较,比较DisPeak个点)
            int newTopIndex = TopIndex;
            int newBottomIndex = BottomIndex;
            for (int i = 0; i <= DisPeak; i++)
            {

                if (Yaxis[TopIndex + i] >= Yaxis[TopIndex])
                {
                    newTopIndex = TopIndex + i;
                }
                if (Yaxis[BottomIndex - i] >= Yaxis[BottomIndex])
                {
                    newBottomIndex = BottomIndex - i;
                }
            }
            TopIndex = newTopIndex;
            BottomIndex = newBottomIndex;

            //添加到结果序列
            if (TopIndex <= DisPeak)
            {
                index.Insert(0, TopIndex);
            }
            if (BottomIndex >= Xaxis.Count - DisPeak)
            {
                index.Add(BottomIndex);
            }

 

 

最后,也就是最简单的峰值判断了。比一下就好了。

           //最小峰值
            int minPeakValue = 10;
            List<int> finalresult = new List<int>();
            for (int i = 0; i < index.Count; i++)
            {
                
                if (Yaxis[index[i]] >= minPeakValue)
                {
                    finalresult.Add(index[i]);
                }
            }
            index = null;
            index = finalresult;
 

 

目录
相关文章
|
11天前
|
存储 监控 NoSQL
Redis处理大量数据主要依赖于其内存存储结构、高效的数据结构和算法,以及一系列的优化策略
【5月更文挑战第15天】Redis处理大量数据依赖内存存储、高效数据结构和优化策略。选择合适的数据结构、利用批量操作减少网络开销、控制批量大小、使用Redis Cluster进行分布式存储、优化内存使用及监控调优是关键。通过这些方法,Redis能有效处理大量数据并保持高性能。
34 0
|
11天前
|
机器学习/深度学习 算法 调度
深度学习|改进两阶段鲁棒优化算法i-ccg
深度学习|改进两阶段鲁棒优化算法i-ccg
|
2天前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
13 4
|
9天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
11天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
17 1
|
11天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
22 1
|
11天前
|
算法 调度
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
|
11天前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
|
11天前
|
算法
【免费】面向多微网网络结构设计的大规模二进制矩阵优化算法
【免费】面向多微网网络结构设计的大规模二进制矩阵优化算法
|
11天前
|
算法 调度
【问题探讨】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究
【问题探讨】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究