11 SVM - SMO - 序列最小优化算法

简介:

05 SVM - 支持向量机 - 概念、线性可分
06 SVM - 线性可分模型算法和案例
07 SVM - 软间隔模型
08 SVM - 软间隔模型算法流程

09 SVM - 线性不可分模型
10 SVM - 核函数

十三、SMO初识

序列最小优化算法 (Sequential minimal optimization, SMO) 是一种用于解决SVM训练过程中所产生的优化问题的算法。 于1998年由John Platt发明,论文详见:《Sequencial Minimal Optimization-a Fast Alg for Training SVM.pdf》

回顾线性可分SVM求解步骤:

回顾 - SVM优化问题

假定存在一个β*=(β1,β2,...,βm)是我们最终的最优解,那么根据KKT条件我们可以计算出w和b的最优解,如下:

有了最优²*后,求解w,b

进而我们可以得到最终的分离超平面为:

目标 - 分离超平面

拉格朗日乘子法和KKT的对偶互补条件为:

β、μ和C之间的关系为:C - βi - μi = 0

根据这个对偶互补条件,我们有如下关系式:

也就是说我们找出的最优的分割超平面必须满足下列的目标条件(g(x)):

拉格朗日对偶化要求的两个限制的初始条件为:


从而可以得到解决问题的思路如下:

1、初始化后一个β值,让它满足对偶问题的两个__初始限制条件__;

2、不断优化这个β值,使得由它确定的分割超平面满足__g(x)目标条件__;而且在优化过程中,始终保证β值满足__初始限制条件__。

__PS:__这个求解过程中,和传统的思路不太一样,不是对目标函数求最小值,而是让__g(x)目标条件__尽可能的满足。

在这样一个过程中,到底如何优化这个β值呢???

整理可以发现β值的优化须遵循以下两个基本原则:

1、每次优化的时候,必须同时优化β的两个分量;因为如果只优化一个分量的话,新的β值就没法满足__初始限制条件中__的__等式约束条件__了。

2、每次优化的两个分量应该是违反__g(x)目标条件__比较多的。也就是说,本来应当是大于等于1的,越是小于1违反__g(x)目标条件__就越多;

或者换一种思路来理解,因为目标函数中存在m个变量,直接优化比较难,利用启发式的方法/EM算法的思想,每次优化的时候,只优化两个变量,将其它的变量看成常数项,这样SMO算法就将一个复杂的优化算法转换为一个比较简单的两变量优化问题了。

分析定义

十四、SMO算法推导

1、构建β1、β2的函数

目标函数转换

认为β1、β2是变量,其它β值是常量,从而将__目标函数转换__如下:

由于β1y1 + β2y2 = k,并且y2 = 1,使用β2来表示β1的值:

用²2来表示²1的值

将上式带入目标优化函数,就可以消去β1,从而只留下仅仅包含β2的式子。

最终求得的公式

深入分析__最终求得的公式__:

深入分析 - 1

深入分析 - 2

2、求解β2的值

深入分析步骤1:

深入分析步骤1

求解²2步骤 - 1

求解²2步骤 - 2

求解²2步骤 - 3

分析最后的公式

求解完最优的β值后,我们接下来要考虑限制条件。


3、考虑β1和β2的取值限定范围

目标函数转换

²1和²2的取值限定范围

考虑β1和β2的取值限定范围,假定新求出来的β值是满足我们的边界限制的,即如下所示:

²值是满足边界限制

分析y1==y2时²的取值范围

当y1=y2的时候,β1+β2=k; 由于β的限制条件,我们可以得到:

y1==y2

当y1≠y2的时候,β1-β2=k;由于β的限制条件,我们可以得到:

y1`y2

结合β的取值限制范围以及函数W的β最优解,我们可以得带迭代过程中的最优解为:

最优解

然后根据β1和β2的关系,从而可以得到迭代后的β1的值:

迭代后的²1的值

求解β的过程中,相关公式如下:

求解²的过程


求解最优β讨论到这里,不明白的可以私信。
下章讨论如何选择最初的β变量。

12 SVM - SMO - 初始β变量的选择

相关文章
|
10天前
|
机器学习/深度学习 数据采集 算法
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
|
2天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第6天】在数据科学和人工智能的广阔天地中,支持向量机(SVM)以其强大的分类能力与理论深度成为机器学习领域中的一个闪亮的星。本文将深入探讨SVM的核心原理、关键特性以及实际应用案例,为读者提供一个清晰的视角来理解这一高级算法,并展示如何利用SVM解决实际问题。
21 7
|
4天前
|
人工智能 算法 测试技术
论文介绍:进化算法优化模型融合策略
【5月更文挑战第3天】《进化算法优化模型融合策略》论文提出使用进化算法自动化创建和优化大型语言模型,通过模型融合提升性能并减少资源消耗。实验显示,这种方法在多种基准测试中取得先进性能,尤其在无特定任务训练情况下仍能超越参数更多模型。同时,该技术成功应用于创建具有文化意识的日语视觉-语言模型。然而,模型融合可能产生逻辑不连贯响应和准确性问题,未来工作将聚焦于图像扩散模型、自动源模型选择及生成自我改进的模型群体。[论文链接: https://arxiv.org/pdf/2403.13187.pdf]
109 1
|
9天前
|
机器学习/深度学习 算法 数据挖掘
【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例(下)
【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例(下)
|
9天前
|
机器学习/深度学习 算法 搜索推荐
【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例(上)
【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例
|
9天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的算法优化之路
【4月更文挑战第28天】 在机器学习的广阔天地中,算法是构建智能系统的核心。本文将深入探讨算法优化的策略与实践,从理论到应用,揭示提升模型性能的关键因素。我们将穿梭于参数调整、特征工程、模型选择和超参数优化等关键环节,剖析如何通过迭代改进,达到提高准确率、减少误差的目的。此文不仅为初学者提供启示,也为经验丰富的开发者提供深度思考,共同探索算法的极致潜能。
|
10天前
|
机器学习/深度学习 人工智能 运维
人工智能平台PAI 操作报错合集之请问Alink的算法中的序列异常检测组件,是对数据进行分组后分别在每个组中执行异常检测,而不是将数据看作时序数据进行异常检测吧
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。
|
10天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据处理到算法优化
【4月更文挑战第28天】在数据驱动的时代,构建一个高效的机器学习模型是实现智能决策和预测的关键。本文将深入探讨如何通过精确的数据预处理、选择合适的学习算法以及进行细致的参数调优来提升模型的性能。我们将介绍一系列实用的技术和策略,包括特征工程、模型评估、超参数调整以及使用集成学习方法来增强模型的泛化能力。通过这些方法,读者将能够更好地理解并应用机器学习技术来解决实际问题。
|
10天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【4月更文挑战第28天】 在数据科学和人工智能的世界中,支持向量机(SVM)以其强大的分类能力而著称。本文将深入探讨SVM的数学原理、关键概念以及实际应用案例。我们将通过直观的解释和示例来揭示SVM如何找到最优决策边界,以及如何通过核技巧处理非线性可分问题。此外,我们还将讨论SVM在现实世界问题中的效能及其局限性。
|
10天前
|
机器学习/深度学习 自然语言处理 算法
深度解析深度学习中的优化算法:从梯度下降到自适应方法
【4月更文挑战第28天】 在深度学习模型训练的复杂数学迷宫中,优化算法是寻找最优权重配置的关键导航者。本文将深入探讨几种主流的优化策略,揭示它们如何引导模型收敛至损失函数的最小值。我们将比较经典的批量梯度下降(BGD)、随机梯度下降(SGD)以及动量概念的引入,进一步探索AdaGrad、RMSProp和Adam等自适应学习率方法的原理与实际应用。通过剖析这些算法的理论基础和性能表现,我们旨在为读者提供一个关于选择合适优化器的参考视角。