轻松玩转 Scikit-Learn 系列 —— KNN 算法

简介:

scikit-learn 是最受欢迎的机器学习库之一,它提供了各种主流的机器学习算法的API接口供使用者调用,让使用者可以方便快捷的搭建一些机器学习模型,并且通过调参可以达到很高的准确率。

这次我们主要介绍scikit-learn中k近邻算法(以下简称为KNN)的使用。

KNN是一种非参数机器学习算法(机器学习中通过模型训练而学到的是模型参数,而要人工调整的是超参数,请注意避免混淆)。使用KNN首先要有一个已知的数据集D,数据集内对于任意一个未知标签的样本数据x,可以通过计算x与D中所有样本点的距离,取出与x距离最近的前k个已知数据,用该k个已知数据的标签对x进行投票,哪一类票数最多,x就是哪一类,这是kNN的大概思想,以下举个例子方便理解。

59145c471ca2ab493c62479ff97e0b852164c859

正方形该分到哪个类?

在上图中有2个已知类别——红色五角星和蓝色三角形和一个未知样本——绿色方格。现在我们要用KNN算法对绿色方格进行分类,以判定其属于这两类中的哪一类,首先令k=5,通过计算距离我们可以知道距离绿色方格最近的5个样本中(假设绿色方格位于圆心),有2个红色五角星,3个蓝色三角形。通过投票可知:蓝色三角形得3票,红色五角星得2票,因此绿色方格应该属于蓝色三角形。kNN就是这样工作的。

上图同时也引申出KNN算法的一个重要的超参数——k。举例来说,如果当k=10时,由图可以看出:红色五角星投了6票,蓝色三角形投了4票,因此未知的样本应该属于红色五角星一类。因此,我们可以看出超参数的选择会影响最终kNN模型的预测结果。下面用代码具体展示如何调用scikit-learn使用kNN,并调整超参数。

336699a1c01e5b168fbe568220c813677f2831f3

以上是利用scikit-learn中默认的k近邻模型来预测未知鸢尾花样本的种类(假装未知),我们在实例化模型的过程中并未传入任何的超参数,则kNN模型会使用模型默认的超参数。

例如:

 ●  metric='minkowski' —— 计算样本点之间距离的时候会采用明可夫斯基距离,与p=2等价
 ●  n_jobs=1 —— kNN算法支持cpu多核并行运算;n_jobs=1,默认使用一个核,当n_jobs=-1时,使用所有的核
 ●  n_neighbors=5 —— 表示k=5,即抽取未知样本附近最近的5个点进行投票
 ●  weights='uniform' —— 表示再利用最近的k个点投票时,他们的权重是等价的,当weights='distance'时,表示一个已知样本点距离未知点的距离越小,其投票时所占权重越大

还有一些其他的很重要的超参数,在这里先暂不说明,以下用代码具体展示。

f1de85c33246ca2e24d013bbfa3f632decb08f90

以下用循环来搜索下关于n_neighbors、和p这两个超参数的最优值。

3e131ccd85ce4a8d5d64f0fd787a215d63280f35

因为我们为了便于可视化,仅使用了鸢尾花数据集中的2个特征,所以导致最终预测的准确率不太高,如果使用该数据集的全部特征来训练模型并预测未知样本,传入最佳超参数的kNN模型,亲测准确度可达100%,当然这与鸢尾花数据集的高质量也有关系。运行以上代码并打印结果可得如上所示。


原文发布时间为:2018-11-21

本文作者:蜉蝣扶幽

本文来自云栖社区合作伙伴“小詹学Python”,了解相关信息可以关注“小詹学Python”。

相关文章
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
7月前
|
KNN
【9月更文挑战第11天】
90 13
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
9月前
knn增强数据训练
【7月更文挑战第28天】
96 2
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等