函数计算 Python 连接 SQL Server 小结

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
函数计算FC,每月15万CU 3个月
简介:

python 连接数据库通常要安装第三方模块,连接 MS SQL Server 需要安装 pymssql 。由于 pymsql 依赖于 FreeTDS,对于先于 2.1.3 版本的 pymssql,需要先安装 FreeTDS。由于早期版本的 pymssql 只提供了 windows 下的 wheel 打包,其他平台(如 linux)需要从源码包编译安装,那需要先安装 freetds-dev 包,以提供必要的头文件。

函数计算的 runtime 运行时的目录是只读的,所以对于需要使用 apt-get 和 pip 安装依赖的场景,需要将依赖安装在代码目录而不是系统目录。具体安装方法可以参考《函数计算安装依赖库方法小结》。而 pymssql 的老版本涉及到编译安装,比常见的二级制安装到本地目录略复杂一些。

函数计算依赖安装需要有个模拟的 linux 环境,从前我们推荐使用 fcli shell 的 sbox ,启动一个接近生产环境的 docker container 进行依赖安装。因为有些依赖是平台相关的,在 mac 系统安装的动态链接库无法在函数计算的 linux 环境下运行, pymssql 恰好属于这种情况。本文我将使用 fc-docker 进行安装和本地测试。

下面的例子是基于函数计算 runtime python3.6 的,对于 python2.7 也进行了测试,同样适用。

准备测试环境

首先使用 docker 在本机 Mac 电脑下运行一个 SQL Server 2017 服务,并初始化表结构,编辑一个 index.py 的测试文件,以验证数据库访问是否成功。

$ docker pull mcr.microsoft.com/mssql/server:2017-latest

$ docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=Codelife.me' \
   -p 1433:1433 --name sql1 \
   -d mcr.microsoft.com/mssql/server:2017-latest
AI 代码解读

将 SQL Server 启动于 1433 端口,并设定 SA 账户密码为 Codelife.me

$ brew tap microsoft/mssql-release https://github.com/Microsoft/homebrew-mssql-release
$ brew update
$ ACCEPT_EULA=y brew install --no-sandbox msodbcsql mssql-tools
AI 代码解读

使用 homebrew 安装 mssql 客户端 sqlcmd。

$ sqlcmd -S localhost -U SA -P 'Codelife.me'
1>CREATE DATABASE TestDB
2>SELECT Name from sys.Databases
3>GO
Name
-----------------------------------------------
master
tempdb
model
msdb
TestDB

(5 rows affected)
AI 代码解读

创建测试数据库 TestDB。

1> USE TestDB
2> CREATE TABLE Inventory (id INT, name NVARCHAR(50), quantity INT)
3> INSERT INTO Inventory VALUES (1, 'banana', 150); INSERT INTO Inventory VALUES (2, 'orange', 154);
4> GO
Changed database context to 'TestDB'.

(1 rows affected)

(1 rows affected)
AI 代码解读

创建一张 Inventory 表,并参入一行测试数据。

1> SELECT * FROM Inventory WHERE quantity > 152;
2> GO
id          name                                               quantity
----------- -------------------------------------------------- -----------
          2 orange                                                     154

(1 rows affected)
1> QUIT
AI 代码解读

验证一下插入结果并退出。

准备一个测试函数

import pymssql

def handler(event, context):
    conn = pymssql.connect(
        host=r'docker.for.mac.host.internal',
        user=r'SA',
        password=r'Codelife.me',
        database='TestDB'
    )
    
    cursor = conn.cursor()
    cursor.execute('SELECT * FROM inventory WHERE quantity > 152')
    
    result = ''

    for row in cursor:
        result += 'row = %r\n' % (row,)

    conn.close()
    return result
AI 代码解读

编写一个测试函数 index.py。该函数连接 mac 宿主机docker.for.mac.host.internal (这里不能是 localhost,因为 fc-docker 会将函数运行在 container 内部)的 SQL Server 服务。执行一个查询,并把结果返回出来。

最新版的 pymssql

创建一个空目录,存放上 index.py 文件。将命令会话的当前路径切换到 index.py 所在的目录,然后执行

$ docker run --rm --name mssql-builder -t -d -v $(pwd):/code --entrypoint /bin/sh aliyunfc/runtime-python3.6
$ docker exec -t mssql-builder pip install -t /code pymssql
$ docker stop mssql-builder
AI 代码解读
  1. 这里使用了 fc-docker 提供的 python3.6 的模拟环境:aliyunfc/runtime-python3.6
  2. 第一行启动了一个不会退出的 docker container,第二行使用 docker exec 进入这个 container 安装依赖,最后一行退出该 container。因为本地路径 $(pwd) 被挂载到 container 内部的 /code 目录,所以 container 退出以后 /code 目录的内容还会保留在本地当前路径下。
  3. pip 通过 -t 参数将 wheel 包安装在 /code 目录下。
$ docker run --rm -v $(pwd):/code aliyunfc/runtime-python3.6 --handler index.handler
row = (2, 'orange', 154)


RequestId: d66496e9-4056-492b-98d9-5bf51e448174          Billed Duration: 144 ms         Memory Size: 19
AI 代码解读

执行上面命令可以顺利返回结果。对于不需要使用老本 pymssql 的用户看到这里就可以结束了。

早期版本的 pymssql

对于早于 2.1.3 版本的 pymssql, pip install 会触发源码编译安装,对于这种情况,需要安装编译时依赖的 freetds-dev,以及运行时依赖的 libsybdb5。编译时依赖可以直接安装在系统目录里,运行时依赖必须安装在本地目录下。

docker run --rm --name mssql-builder -t -d -v $(pwd):/code --entrypoint /bin/sh aliyunfc/runtime-python3.6

docker exec -t mssql-builder apt-get install -y -d -o=dir::cache=/code libsybdb5
docker exec -t mssql-builder bash -c 'for f in $(ls /code/archives/*.deb); do dpkg -x $f $(pwd) ; done;'
docker exec -t mssql-builder bash -c "rm -rf /code/archives/; mkdir /code/lib;cd /code/lib; ln -sf ../usr/lib/x86_64-linux-gnu/libsybdb.so.5 ."
docker exec -t mssql-builder apt-get install -y freetds-dev 
docker exec -t mssql-builder pip install cython 
docker exec -t mssql-builder pip install -t /code pymssql==2.1.3

docker stop mssql-builder
AI 代码解读
  1. 第一行启动一个 container,第十行停止并自动删除该 container。
  2. 第二行至第三行将运行时依赖 libsybdb5 安装于本地目录。
  3. 将动态链接库 libsybdb.so.5 链接到目录 /code/lib 目录下,因为该目录默认配置到了环境变量 LD_LIBRARY_PATH 下。
  4. 将 freetds-dev 和 cython 安装到系统目录,用于 pymssql 编译安装,因为运行时 pymssql 不需要这两个库,所以无需安装在本地目录
  5. 安装 2.1.3 版本的 pymssql,从 2.1.4 版本开始已经不需要源码安装了。
$ docker run --rm -v $(pwd):/code aliyunfc/runtime-python3.6 --handler index.handler
row = (2, 'orange', 154)


RequestId: d66496e9-4056-492b-98d9-5bf51e448174          Billed Duration: 144 ms         Memory Size: 19
AI 代码解读

测试通过。

小结

这是一份来迟的函数计算使用 sql server 数据库的配置文档。当前版本的 pymssql 已经不再需要源码安装了。但是 pip 源码包安装的方法,对于其他类似的场景也是适用的。

本文也提供了一种基于 fc-docker 的配置和调试方法,不同 fcli 的 sbox,fc-docker 可以写成脚本反复执行,并且也可以用于本地模拟执行,对于 CI 场景非常有帮助。

参考阅读

  1. http://www.pymssql.org/en/latest/intro.html#install
  2. http://www.freetds.org/
  3. http://www.pymssql.org/en/stable/pymssql_examples.html
  4. https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-2017
  5. https://cloudblogs.microsoft.com/sqlserver/2017/05/16/sql-server-command-line-tools-for-macos-released/
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
打赏
0
0
0
1
1267
分享
相关文章
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
使用Python和PDFPlumber进行简历筛选:以SQL技能为例
本文介绍了一种使用Python和`pdfplumber`库自动筛选简历的方法,特别是针对包含“SQL”技能的简历。通过环境准备、代码解析等步骤,实现从指定文件夹中筛选出含有“SQL”关键词的简历,并将其移动到新的文件夹中,提高招聘效率。
102 8
使用Python和PDFPlumber进行简历筛选:以SQL技能为例
FreeMQTT:一款Python语言实现的开源MQTT Server
FreeMQTT 是一款用 Python 语言并基于 Tornado 开发的开源 MQTT 服务器,支持 MQTT3.1.1 和 MQTT5.0 协议,提供多租户安全隔离、高效 Topic 匹配算法及实时上下线通知等功能,适用于 IoT 场景。快速启动仅需克隆仓库、安装依赖并运行服务。
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
惊!Python Web安全黑洞大曝光:SQL注入、XSS、CSRF,你中招了吗?
在数字化时代,Web应用的安全性至关重要。许多Python开发者在追求功能时,常忽视SQL注入、XSS和CSRF等安全威胁。本文将深入剖析这些风险并提供最佳实践:使用参数化查询预防SQL注入;通过HTML转义阻止XSS攻击;在表单中加入CSRF令牌增强安全性。遵循这些方法,可有效提升Web应用的安全防护水平,保护用户数据与隐私。安全需持续关注与改进,每个细节都至关重要。
182 5
深度揭秘:Python Web安全攻防战,SQL注入、XSS、CSRF一网打尽!
在Web开发领域,Python虽强大灵活,却也面临着SQL注入、XSS与CSRF等安全威胁。本文将剖析这些常见攻击手段,并提供示例代码,展示如何利用参数化查询、HTML转义及CSRF令牌等技术构建坚固防线,确保Python Web应用的安全性。安全之路永无止境,唯有不断改进方能应对挑战。
133 5
深度揭秘:Python Web安全攻防战,SQL注入、XSS、CSRF一网打尽!
在Web开发领域,Python虽强大灵活,但安全挑战不容小觑。本文剖析Python Web应用中的三大安全威胁:SQL注入、XSS及CSRF,并提供防御策略。通过示例代码展示如何利用参数化查询、HTML转义与CSRF令牌构建安全防线,助您打造更安全的应用。安全是一场持久战,需不断改进优化。
89 3
Python Web安全大挑战:面对SQL注入、XSS、CSRF,你准备好了吗?
在构建Python Web应用时,安全性至关重要。本文通过三个真实案例,探讨了如何防范SQL注入、XSS和CSRF攻击。首先,通过参数化查询替代字符串拼接,防止SQL注入;其次,利用HTML转义机制,避免XSS攻击;最后,采用CSRF令牌验证,保护用户免受CSRF攻击。这些策略能显著增强应用的安全性,帮助开发者应对复杂的网络威胁。安全是一个持续的过程,需不断学习新知识以抵御不断变化的威胁。
168 1
Python Web开发者必看!SQL注入、XSS、CSRF全面解析,守护你的网站安全!
在Python Web开发中,构建安全应用至关重要。本文通过问答形式,详细解析了三种常见Web安全威胁——SQL注入、XSS和CSRF,并提供了实用的防御策略及示例代码。针对SQL注入,建议使用参数化查询;对于XSS,需对输出进行HTML编码;而防范CSRF,则应利用CSRF令牌。通过这些措施,帮助开发者有效提升应用安全性,确保网站稳定运行。
103 1
从入门到精通:Python Web安全守护指南,SQL注入、XSS、CSRF全防御!
【9月更文挑战第13天】在开发Python Web应用时,安全性至关重要。本文通过问答形式,详细介绍如何防范SQL注入、XSS及CSRF等常见威胁。通过使用参数化查询、HTML转义和CSRF令牌等技术,确保应用安全。附带示例代码,帮助读者从入门到精通Python Web安全。
134 6

相关产品

  • 函数计算