基于协同过滤算法的推荐

  1. 云栖社区>
  2. 阿里云机器学习>
  3. 博客>
  4. 正文

基于协同过滤算法的推荐

傲海 2018-11-16 10:26:03 浏览7276
展开阅读全文

基于协同过滤算法的推荐

(本实验选用数据为真实电商脱敏数据,仅用于学习,请勿商用)

数据挖掘的一个经典案例就是尿布与啤酒的例子。尿布与啤酒看似毫不相关的两种产品,但是当超市将两种产品放到相邻货架销售的时候,会大大提高两者销量。很多时候看似不相关的两种产品,却会存在这某种神秘的隐含关系,获取这种关系将会对提高销售额起到推动作用,然而有时这种关联是很难通过经验分析得到的。这时候我们需要借助数据挖掘中的常见算法-协同过滤来实现。这种算法可以帮助我们挖掘人与人以及商品与商品的关联关系。

协同过滤算法是一种基于关联规则的算法,以购物行为为例。假设有甲和乙两名用户,有a、b、c三款产品。如果甲和乙都购买了a和b这两种产品,我们可以假定甲和乙有近似的购物品味。当甲购买了产品c而乙还没有购买c的时候,我们就可以把c也推荐给乙。这是一种典型的user-b

网友评论

登录后评论
0/500
评论
傲海
+ 关注
所属云栖号: 阿里云机器学习