基于深度迁移学习进行时间序列分类

简介:

论文动机

通常来说,用传统的机器学习方法(例如 KNN、DTW)进行时间序列分类能取得比较好的效果。但是,基于深度网络的时间序列分类往往在大数据集上能够打败传统方法。另一方面,深度网络必须依赖于大量的训练数据,否则精度也无法超过传统机器学习方法。在这种情况下,进行数据增强、收集更多的数据、实用集成学习模型,都是提高精度的方法。这其中,迁移学习也可以被用在数据标注不足的情况。

从深度网络本身来看,有研究者注意到了,针对时间序列数据,深度网络提取到的特征,与 CNN 一样,具有相似性和继承性。因此,作者的假设就是,这些特征不只是针对某一数据集具有特异性,也可以被用在别的相关数据集。这就保证了用深度网络进行时间序列迁移学习的有效性。

论文方法

本文基本方法与在图像上进行深度迁移一致:先在一个源领域上进行 pre-train,然后在目标领域上进行 fine-tune。

然而,与图像领域有较多的经典网络结构可选择不同,时间序列并没有一个公认的经典网络架构。因此,作者为了保证迁移的效果不会太差,选择了之前研究者提出的一种全卷积网络(FCN,Fully Convolutional Neural Network)。这种网络已经在之前的研究中被证明具有较高的准确性和鲁棒性。

网络的结构如下图所示。网络由 3 个卷积层、1 个全局池化层、和 1 个全连接层构成。使用全连接层的好处是,在进行不同输入长度序列的 fine-tune 时,不需要再额外设计池内化层。

90b8184bfd698cd79401f18aec1695ec852b3726

与图像的区别就是,输入由图片换成了时间序列。注意到,图片往往具有一定的通道数(如常见的 R、G、B 三通道);时间序列也有通道:即不同维的时间序列数据。最简单的即是1维序列,可以认为是 1 个通道。多维时间序列则可以认为是多个通道。

网络迁移适配

Fine-tune 的基本方法就是,不改变除 softmax 层以外的层的结构,只改变 softmax 层的构造。例如,预训练好的网络可能是一个分 5 类的网络,而目标领域则是一个 10 类的分类问题。这时候,就需要改变预训练网络的 softmax 层,使之由原来的 5 层变为 10 层,以适应目标领域的分类。

因此,源领域和目标领域的网络相比,除最后一层外,其他都相同。当然,相同的部分,网络权重也相同。

作者对整个网络都在目标领域上进行了fine-tune,而不是只fine-tune最后一层。因为以往的研究标明,在整个网络上进行 fine-tune,往往会比只 fine-tune 某些层效果好。

选择合适的源领域:数据集间相似性

在进行迁移学习前,一个重要的问题就是:给定一个目标域,如何选择合适的源领域?如果选择的源域与目标域相似性过小,则很可能造成负迁移。

度量时间序列相似性的另一个问题是,如何度量不同维度的时间序列的相似性。作者提出把多维时间序列规约成每类由一维序列构成,然后利用 DTW(Dynamic Time Warping)来度量两个时间序列的相似性。

9ab5a78aa853f3f39cfbe4941ffc6ec7dee31d17

在进行规约时,作者利用了之间研究者提出的 DTW Barycenter Averaging (DBA) [2] 方法进行了时间序列的规约。经过规约后,两个数据集便可度量相似性。

然而,这种方法具有很大的局限性。例如,它没有考虑到数据集内部不同维度之间的关联性。作者自己也承认这种方法不够好,但是由于他们的主要关注点是如何迁移,因此,并未在这个方面多做文章。

经过相似度计算,可以针对 n 个数据集,得到一个 n×n 的相似性矩阵。此矩阵表示了不同数据集之间的相似度。相似度高的两个数据集,迁移效果最好。

实验

作者利用了 UCI 机器学习仓库中的 85 个时间序列分类数据集,构建了 7140 对迁移学习任务。为了进行如此大量的实验,他们用了来自英伟达的 60 个 GPU(只想说,有钱真好)。

实验非常充分,这里简要说一下部分结论:

1. 利用迁移往往效果比不迁移好,并且,几乎不会对原来的网络产生负面作用;

2. 同一个目标域,不同的源域,产生的迁移效果千差万别:总能找到一些领域,迁移效果比不迁移好;

3. 在选择正确的源域上,有时,随机选择的效果不一定会比经过作者的方法计算出来的要差。这说明,计算领域相似性的方法还有待加强。

总结

本文利用大量的时间序列进行了深度迁移学习分类的实验。用众多的实验结果证明了迁移学习对于时间序列分类的有效性。作者还提出了一种简单比较时间序列相似性从而选择源领域的方法。


原文发布时间为:2018-11-15
本文作者:王晋东
本文来自云栖社区合作伙伴“ PaperWeekly”,了解相关信息可以关注“ PaperWeekly”。
相关文章
|
5月前
LSTM+Transformer混合模型时间序列预测实战教学
LSTM+Transformer混合模型时间序列预测实战教学
175 0
|
2天前
R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
12 1
|
6月前
|
机器学习/深度学习 运维 计算机视觉
TimesNet:时间序列预测的最新模型
2023年4月发表了一个新的模型,它在时间序列分析的多个任务中实现了最先进的结果,如预测、imputation、分类和异常检测:TimesNet。
401 0
|
8月前
|
机器学习/深度学习 算法 数据可视化
机器学习-特征选择:如何使用相关性分析精确选择最佳特征?
本文致力于利用相关性分析来辅助特征选择过程。相关性分析作为一种用于量化特征之间关系的方法,可以帮助我们理解数据中的潜在模式和相互作用。通过分析特征之间的相关性,我们可以更加准确地选择具有高预测能力和独立性的特征,从而提高特征选择的效果和结果。
830 0
|
5月前
|
机器学习/深度学习
kears搭建lstm实现用电量预测时间序列预测
kears搭建lstm实现用电量预测时间序列预测
30 0
|
7月前
|
机器学习/深度学习 存储 算法
机器学习k近邻算法鸢尾花种类预测
机器学习k近邻算法鸢尾花种类预测
50 0
|
8月前
|
机器学习/深度学习 数据采集 算法
机器学习-特征选择:如何使用Lassco回归精确选择最佳特征?
本文旨在介绍Lasso回归在精确特征选择中的应用。首先,我们将探讨特征选择的重要性,包括如何提高模型性能和降低计算成本。接着,我们将深入解析Lasso回归的原理和算法,并说明其在特征选择中的优势。为了支撑我们的观点,我们将引用相关文献提供的实证结果和案例分析。
1332 1
|
机器学习/深度学习 存储 算法
如何利用Transformer建立时间序列预测模型
如何利用Transformer建立时间序列预测模型
1178 0
如何利用Transformer建立时间序列预测模型
|
11月前
|
数据采集 机器学习/深度学习 Python
机器学习 - 数据预处理中的 特征离散化 方法
在数据分析中,我们认为在某个范围内取值过于密集的特征认为是取值”连续“的特征。出于某些需求经常需要将这些”连续特征进行离散化“。本文介绍三种比较实用的数据离散化方法。 本文介绍可供参考的三种特征离散化方法的Python实现。
190 1
|
机器学习/深度学习 数据处理
机器学习之分类-概率生成模型
机器学习之分类-概率生成模型
203 0
机器学习之分类-概率生成模型