兄弟连区块链教程区块链信息安全3椭圆曲线加解密及签名算法的技术原理二

简介:

椭圆曲线加解密及签名算法的技术原理及其Go语言实现

椭圆曲线加解密算法原理

建立基于椭圆曲线的加密机制,需要找到类似RSA质因子分解或其他求离散对数这样的难题。
而椭圆曲线上的已知G和xG求x,是非常困难的,此即为椭圆曲线上的的离散对数问题。
此处x即为私钥,xG即为公钥。

椭圆曲线加密算法原理如下:

设私钥、公钥分别为k、K,即K = kG,其中G为G点。

公钥加密:
选择随机数r,将消息M生成密文C,该密文是一个点对,即:
C = {rG, M+rK},其中K为公钥

私钥解密:
M + rK - k(rG) = M + r(kG) - k(rG) = M
其中k、K分别为私钥、公钥。

椭圆曲线签名算法原理

椭圆曲线签名算法,即ECDSA。

设私钥、公钥分别为k、K,即K = kG,其中G为G点。

私钥签名:

  • 1、选择随机数r,计算点rG(x, y)。
  • 2、根据随机数r、消息M的哈希h、私钥k,计算s = (h + kx)/r。
  • 3、将消息M、和签名{rG, s}发给接收方。

公钥验证签名:

  • 1、接收方收到消息M、以及签名{rG=(x,y), s}。
  • 2、根据消息求哈希h。
  • 3、使用发送方公钥K计算:hG/s + xK/s,并与rG比较,如相等即验签成功。

原理如下:
hG/s + xK/s = hG/s + x(kG)/s = (h+xk)G/s
= r(h+xk)G / (h+kx) = rG

Go语言中椭圆曲线的实现

椭圆曲线的接口定义:

type Curve interface {
    //获取椭圆曲线参数
    Params() *CurveParams
    //是否在曲线上
    IsOnCurve(x, y *big.Int) bool
    //加法
    Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
    //二倍运算
    Double(x1, y1 *big.Int) (x, y *big.Int)
    //k*(Bx,By)
    ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int)
    //k*G, G为基点
    ScalarBaseMult(k []byte) (x, y *big.Int)
}
//代码位置src/crypto/elliptic/elliptic.go

椭圆曲线的接口实现:

type CurveParams struct {
    //有限域GF(p)中质数p
    P       *big.Int
    //G点的阶
    //如果存在最小正整数n,使得nG=O∞,则n为G点的阶
    N       *big.Int
    //椭圆曲线方程y²= x³-3x+b中常数b
    B       *big.Int
    //G点(x,y)
    Gx, Gy  *big.Int
    //密钥长度
    BitSize int
    //椭圆曲线名称
    Name    string
}

func (curve *CurveParams) Params() *CurveParams {
    //获取椭圆曲线参数,即curve,代码略
}

func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
    //是否在曲线y²=x³-3x+b上,代码略
}

func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
    //加法运算,代码略
}

func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
    //二倍运算,代码略
}

func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
    //k*(Bx,By),代码略
}

func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
    //k*G, G为基点,代码略
}
//代码位置src/crypto/elliptic/elliptic.go

Go语言中椭圆曲线签名的实现

Go标准库中实现的椭圆曲线签名原理,与上述理论中基本接近。
相关证明方法已注释在代码中。

//公钥
type PublicKey struct {
    elliptic.Curve
    X, Y *big.Int
}

//私钥
type PrivateKey struct {
    PublicKey //嵌入公钥
    D *big.Int //私钥
}

func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
    entropylen := (priv.Curve.Params().BitSize + 7) / 16
    if entropylen > 32 {
        entropylen = 32
    }
    entropy := make([]byte, entropylen)
    _, err = io.ReadFull(rand, entropy)
    if err != nil {
        return
    }

    md := sha512.New()
    md.Write(priv.D.Bytes()) //私钥
    md.Write(entropy)
    md.Write(hash)
    key := md.Sum(nil)[:32]

    block, err := aes.NewCipher(key)
    if err != nil {
        return nil, nil, err
    }

    csprng := cipher.StreamReader{
        R: zeroReader,
        S: cipher.NewCTR(block, []byte(aesIV)),
    }

    c := priv.PublicKey.Curve //椭圆曲线
    N := c.Params().N //G点的阶
    if N.Sign() == 0 {
        return nil, nil, errZeroParam
    }
    var k, kInv *big.Int
    for {
        for {
            //取随机数k
            k, err = randFieldElement(c, csprng)
            if err != nil {
                r = nil
                return
            }

            //求k在有限域GF(P)的逆,即1/k
            if in, ok := priv.Curve.(invertible); ok {
                kInv = in.Inverse(k)
            } else {
                kInv = fermatInverse(k, N) // N != 0
            }

            //求r = kG
            r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
            r.Mod(r, N)
            if r.Sign() != 0 {
                break
            }
        }

        e := hashToInt(hash, c) //e即哈希
        s = new(big.Int).Mul(priv.D, r) //Dr,即DkG
        s.Add(s, e) //e+DkG
        s.Mul(s, kInv) //(e+DkG)/k
        s.Mod(s, N) // N != 0
        if s.Sign() != 0 {
            break
        }
        
        //签名为{r, s},即{kG, (e+DkG)/k}
    }

    return
}

//验证签名
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
    c := pub.Curve //椭圆曲线
    N := c.Params().N //G点的阶

    if r.Sign() <= 0 || s.Sign() <= 0 {
        return false
    }
    if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
        return false
    }
    e := hashToInt(hash, c) //e即哈希

    var w *big.Int
    //求s在有限域GF(P)的逆,即1/s
    if in, ok := c.(invertible); ok {
        w = in.Inverse(s)
    } else {
        w = new(big.Int).ModInverse(s, N)
    }

    u1 := e.Mul(e, w) //即e/s
    u1.Mod(u1, N)
    u2 := w.Mul(r, w) //即r/s
    u2.Mod(u2, N)

    var x, y *big.Int
    if opt, ok := c.(combinedMult); ok {
        x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
    } else {
        x1, y1 := c.ScalarBaseMult(u1.Bytes()) //即eG/s
        x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) //即DGr/s
        //即eG/s + DGr/s = (e + Dr)G/s
        //= (e + Dr)kG / (e + DkG) = (e + Dr)r / (e + Dr) = r
        x, y = c.Add(x1, y1, x2, y2) 
    }

    if x.Sign() == 0 && y.Sign() == 0 {
        return false
    }
    x.Mod(x, N)
    return x.Cmp(r) == 0
}
//代码位置src/crypto/ecdsa/ecdsa.go

后记

椭圆曲线数字签名算法,因其高安全性,目前已广泛应用在比特币、以太坊、超级账本等区块链项目中。

感谢关注兄弟连区块链教程分享!

相关文章
|
28天前
|
安全 区块链
区块链积分商城系统开发详细指南//需求功能/指南教程/源码流程
Developing a blockchain points mall system involves multiple aspects such as blockchain technology, smart contracts, front-end development, and business logic design. The following is the general process for developing a blockchain points mall system
|
2月前
|
算法 安全 Java
Java 实现 RSA 非对称加密算法-加解密和签名验签
Java 实现 RSA 非对称加密算法-加解密和签名验签
|
2月前
|
机器学习/深度学习 监控 算法
yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
109 1
|
4月前
|
算法 NoSQL Java
Apache Zeppelin系列教程第八篇——LRU算法在Apache Zeppelin中的应用
Apache Zeppelin系列教程第八篇——LRU算法在Apache Zeppelin中的应用
31 0
|
30天前
|
Rust Dart 算法
55.3k star!开源算法教程,附带动画图解,学习算法不再苦恼!
55.3k star!开源算法教程,附带动画图解,学习算法不再苦恼!
|
1月前
|
安全 区块链
区块链游戏系统开发步骤需求丨功能逻辑丨规则玩法丨指南教程丨源码详细
Developing blockchain game systems has been a highly anticipated field in recent years. By combining blockchain technology and game mechanics, players can enjoy a brand new gaming experience and higher game credibility.
|
3月前
|
机器学习/深度学习 算法 算法框架/工具
OpenAI Gym 中级教程——深入强化学习算法
OpenAI Gym 中级教程——深入强化学习算法
166 6
|
4月前
|
算法
泡泡龙游戏开发实战教程(5):核心查找匹配算法
泡泡龙游戏开发实战教程(5):核心查找匹配算法
44 0
|
4月前
|
DataWorks 算法 对象存储
这个问题可能是由于DataWorks和OSS之间的签名算法不一致导致的
这个问题可能是由于DataWorks和OSS之间的签名算法不一致导致的
23 2
|
5月前
|
算法 Java 对象存储
深入理解JVM系列教程(04) - 垃圾回收机制(二) - 垃圾回收算法
深入理解JVM系列教程(04) - 垃圾回收机制(二) - 垃圾回收算法
114 0