PN结加正向偏置电压 其空间电荷区为何变窄

简介: 理论基础:导体是内部具有较多可以自由移动的电荷的物体.绝缘体是内部没有或者有很少可以自由移动的电荷的物体.+代表空穴带正电-代表电子带负电两竖线之间表示无自由移动电子或空穴部分,相当于绝缘体没加电压时:P ++| |-- N当P加低电压N加高电压时,空穴会被P区的外加电压带负电荷的电极向左吸引,电子会被向右吸引.
理论基础:导体是内部具有较多可以自由移动的电荷的物体.
绝缘体是内部没有或者有很少可以自由移动的电荷的物体.
+代表空穴带正电
-代表电子带负电
两竖线之间表示无自由移动电子或空穴部分,相当于绝缘体
没加电压时:P ++| |-- N
当P加低电压N加高电压时,空穴会被P区的外加电压带负电荷的电极向左吸引,电子会被向右吸引.同时空穴会被N区电极向左排斥,电子会被P区电极向右排斥.又因为PN之间自由移动的空穴和电子是有限的数量.
于是形成:P +| |- N 
绝缘体部分变的更宽了,外加电压越大,绝缘体部分会越大.所以不易导通.
当P加高电压N加低电压时,由于P为正极,空穴端由于外加正极带正电荷正电荷变多向右扩散(排斥作用),右边的负电子也会向左运动.由于PN之间的绝缘体空间很小,所以PN稍有电压中间绝缘部分就会消失.
变为导通状态: P +++--- N
P±±±N
由上图可看,PN之间的绝缘体部分消失,只剩下有自由移动的空穴区和电子区,这种状态是刚刚在PN两段加上电压时由于PN区各自的同种电荷增加排斥左右,使两极电荷向对运动.
一旦空穴和电子相遇,绝缘体部分就消失,PN之间就是一个导体,导体当然是可以连续导通的.并且一旦空穴和电子相遇,由于它们带电不同,会马上由于引力作用混合变为导通PN结,由于外加电压是持续电源,电荷是无限的,所以这种导通状态就持续下去. 
注意: 电源的正极上有多余的正电荷,负极上有多余的负电荷,和电极相连的导体同样有多余的电荷.
补充不懂的话就别看这部分了:当P和电源的正极相连,而N不连负极时,由于P和正极都带正电荷,所以P区电荷由于斥力作用会向右扩散.如图 P+++| |--N 这时如果正极电压足够高,那么正电荷扩散就会达到N的负电,电子区也能形成导通状态.
如图P++++--N进而形成P±±±N最终为P±±±+-+N由于N区没有连线,所以负电荷数量是一定的情况下,一部分电子被P区和正极吸引走N区就表现为带正电,PN间呈现为导体.
目录
相关文章
|
2月前
|
C++
【PTA】​L1-006 连续因子​(C++)
【PTA】​L1-006 连续因子​(C++)
112 0
【PTA】​L1-006 连续因子​(C++)
|
6月前
BJT的静态偏置和放大电路构成
BJT的静态偏置是指在放大电路中对BJT进行偏置,以确保其工作在合适的工作点上,从而实现稳定的放大效果。静态偏置电路通常由一个或多个电阻、电容和电源组成。
100 0
|
5月前
一阶动态电路时域分析
一阶动态电路时域分析是指研究电路在时间域内响应特性的一种分析方法。 一阶动态电路时域分析的主要特征和意义如下: 对象是一阶电路。一阶电路指其动态行为可以用一个一阶微分方程描述的电路,如RC电路、RL电路等。 分析域是时间域。研究的不是电路在不同频率下的频率响应,而是输入信号作用下输出量随时间的变化规律。 研究内容是电路的时域响应特性。如电路对阶跃输入的阶跃响应、对脉冲输入的脉冲响应曲线等。 主要方法是解一阶微分方程。根据电路的等效模型写出其一阶微分方程,然后选择适当解法求其时间域解。 目的是分析电路的动态性能。如过渡过程、时间常数、稳态误差等定量参数,为电路设计和应用提供参考。
104 0
|
9月前
根据带宽、功率、频率和调制对给定IQ信号进行分类(Matlab代码实现)
根据带宽、功率、频率和调制对给定IQ信号进行分类(Matlab代码实现)
|
4月前
动态电路方程
动态电路方程是描述电路中元件之间关系的数学方程。
38 1
|
5月前
时钟(分针和时针的重合问题)
时钟(分针和时针的重合问题)
39 1
|
6月前
PN结的介绍
一、PN结的形成 PN结的形成是通过将P型半导体和N型半导体直接接触而成。在P型半导体中,掺入了少量的三价杂质原子,如硼;而N型半导体中则掺入了五价杂质原子,如磷。当两种半导体相接触时,形成了一个P型区域和一个N型区域,这就是PN结的基本结构。 二、PN结的特性 1. 正向偏置 在正向偏置时,将P型区域连接到正电压,N型区域连接到负电压,电子从N型区域流向P型区域,空穴从P型区域流向N型区域。这时,PN结的导电性增强,形成了电流通路。正向偏置下,PN结的电阻较小,电流通过PN结会有一个较小的电压降。 2. 反向偏置 在反向偏置时,将P型区域连接到负电压,N型区域连接到正电压,电子从P型区域
66 0
|
7月前
|
算法 异构计算
m基于PN导频序列和cordic算法的基带数据帧频偏估计和补偿FPGA实现,包含testbench
m基于PN导频序列和cordic算法的基带数据帧频偏估计和补偿FPGA实现,包含testbench
68 0
|
8月前
无源晶振匹配电容—计算方法
无源晶振匹配电容—计算方法
135 0
|
8月前
|
索引
NR PRACH(三)时域位置
由l0、N_RA_slot、N_RA_t和N_RA_dur,UE可以计算出所有RACH时机的起始符号l,公式为l = l0 + n_RA_t x N_RA_dur + 14 x n_RA_slot。其中的参数由table 6.3.3.2-2~4 得到,计算即可确定start symbol的位置,既然都这么说了,表中的starting symbol l0 肯定不是起始符号的索引,我最初犯的就是这个错误。