【GIS新探索】算法实现在不规则区域内均匀分布点

简介: 1 概要         在不规则区域内均匀分布点,这个需求初看可能不好理解。如果设想一下需求场景就比较简单了。         场景1:在某个地区范围内,例如A市区有100W人口,需要将这100W人口在地图上面相对均匀的标识出来。

1 概要

        在不规则区域内均匀分布点,这个需求初看可能不好理解。如果设想一下需求场景就比较简单了。

        场景1:在某个地区范围内,例如A市区有100W人口,需要将这100W人口在地图上面相对均匀的标识出来。

        场景2:某不规则场馆,需要均匀布置展位,快速生成展位示意图。

        场景其他:规则的电线杆、移动基站等模拟生成。

 

2 设计方案

        既然是要求相对均匀的分布,我想到了格网法,即将多边形分割成特定边长的正方形格子,每个格子的中心点作为分布点。

        好处:得到的点是绝对均匀的。

        难点:需要判断格子是否在多边形范围内。

        示意图:

        

        其中1 2 3 4 四个点代表了不规则多边形的外接矩形角点。绿色的点用来算出1 2 3 4点的。

3 实现

        第一步先看看模拟区域。

        第二步画格子。

        第三步标注格子中间的点。

        第四步取出在区域范围内的格子中心点。

        至此,基本满足了要求,部分格子的位置细节稍作调整就好。

4 代码    

        第一步,绘制区域,使用的是canvas。

//公共方法,canvas绘制
var drawFunc={
    ctx:null,
    init:function(domId){
        //获取canvas容器
        var can = document.getElementById(domId);
        //创建一个画布
        var ctx = can.getContext('2d');
        this.ctx=ctx;
    },
    drawArea:function(pts,background){
        this.ctx.beginPath();
         
        var pt=pts[0];
        this.ctx.moveTo(pt[0],pt[1]);          
 
        for(var i=1;i<pts.length;i++){
            var pt=pts[i];
            this.ctx.lineTo(pt[0],pt[1]);    
        }
        this.ctx.fillStyle = background;
        this.ctx.fill();
         
        this.ctx.closePath();
    },
     
    drawPoint:function(point,color,size){
        this.ctx.beginPath();
        this.ctx.arc(point[0], point[1], size, 0, 2*Math.PI, true);
         
        this.ctx.fillStyle =color;
        this.ctx.fill();   
         
        this.ctx.closePath();
    },
     
    drawLine:function(pts,lineWidth,color){
        this.ctx.beginPath();
        this.ctx.lineWidth=lineWidth;
         
        var pt=pts[0];
        this.ctx.moveTo(pt[0],pt[1]);    
        for(var i=1;i<pts.length;i++){
            var pt=pts[i];
            this.ctx.lineTo(pt[0],pt[1]);    
        }
        this.ctx.strokeStyle = color;
        this.ctx.stroke();
    }
}

  

//01 创建不规则多边形
    var pts=[];
    pts.push([100,400]);
    pts.push([800,400]);
    pts.push([800,100]);
    pts.push([500,100]);
    pts.push([500,250]);
    pts.push([100,250]);
    drawFunc.drawArea(pts,"#cddc39");

  

        第二步,绘制格子。这里有两个步骤,获取外接矩形和根据特定间距绘制格子。

/**
*绘制格网,并返回格网中心点
**/
function buildBox(space,startPt,endPt){
    var width=endPt[0]-startPt[0];
    var height=endPt[1]-startPt[1];
         
    var y2=endPt[1];
    for(var i=0;i<width;i+=space){
        var x=startPt[0]+i;
         
        var y1=startPt[1];    
         
        drawFunc.drawLine([[x,y1],[x,y2]],1,"#eee");
    }
     
    var x2=endPt[0];
    for(var i=0;i<height;i+=space){    
        var x1=startPt[0];    
        var y=startPt[1]+i;       
         
        drawFunc.drawLine([[x1,y],[x2,y]],1,"#eee");
    }
     
    var points=[];
     
    for(var i=space;i<width;i+=space){
        var x=startPt[0]+i-space/2;       
        for(var n=space;n<height;n+=space){
            var y=startPt[1]+n-space/2;           
             
            points.push([x,y]);
        }
    }
     
    return points;
}

  

   //02 求不规则多边形外接矩形左上右下点
    var box=queryMaxMinPt(pts);
        //03 以一定的间距绘制格网,并返回格网中心点  
    var points= buildBox(20,box.startPt,box.endPt);
/*
*求多边形外接矩形左上右下点
*/
function queryMaxMinPt(points){
    var x_min=100000000000000;
    var x_max=-1;
     
    var y_min=100000000000000;
    var y_max=-1;
     
    for(var i=0;i<points.length;i++){
        var pt=points[i];
         
        if(pt[0]<x_min)
            x_min=pt[0];
        if(pt[0]>x_max)
            x_max=pt[0];
             
        if(pt[1]<y_min)
            y_min=pt[1];
        if(pt[1]>y_max)
            y_max=pt[1];
    }
     
    return {
        startPt:[x_min,y_min],
        endPt:[x_max,y_max]
    }
         
     
}

    第三和四步,查找在区域范围内的格子,并绘制。

/**
*检查点是否在多边形范围内
**/
function checkInside (point, vs) {    
    var x = point[0], y = point[1];
     
    var inside = false;
    for (var i = 0, j = vs.length - 1; i < vs.length; j = i++) {
        var xi = vs[i][0], yi = vs[i][1];
        var xj = vs[j][0], yj = vs[j][1];
         
        var intersect = ((yi > y) != (yj > y))
            && (x < (xj - xi) * (y - yi) / (yj - yi) + xi);
        if (intersect) inside = !inside;
    }
     
    return inside;
};

      注:checkInside方法来源自Git,地址:https://github.com/substack/point-in-polygon/blob/master/index.js

//04 遍历中心点,判断点是否在范围内
    var pointCount=0;
    for(var i=0;i<points.length;i++){
        var pt=points[i];
        if(checkInside(pt,pts)){
            drawFunc.drawPoint(pt,"red",2);
            pointCount++;
        }
             
    }
     
    console.log("范围内有:"+pointCount+"个点");

  

以上就是核心的实现代码,如果需要下载源码请移步我的博客下载,地址:

http://www.88gis.cn/web/pages/blog/blogInfo.html?id=38d8959a-f348-41df-b507-6c10e517e7a7

 

查看更多GIS、WPF、JAVA、前端技术分享,请访问我的个人技术网站,查看更多技术分享。网站地址:www.88gis.cn

 

相关文章
|
1月前
|
算法 Python
关联规则算法及其画图(python
关联规则算法及其画图(python
25 2
|
7月前
|
运维 监控 算法
优化电脑屏幕监控软件:关联规则挖掘算法的引入
在如今的职场中,电脑屏幕监控软件已经成为了许多企业的标配,用于监测员工的工作行为以提高生产力和安全性。然而,为了让监控软件发挥最大的效用,关联规则挖掘算法正在崭露头角。接下来就让我们通过以下方面来看看如何通过关联规则挖掘算法提高电脑屏幕监控软件的监视效率——
158 0
|
1月前
|
算法
关联规则分析(Apriori算法2
关联规则分析(Apriori算法2
33 0
|
3月前
|
算法
关联规则分析(Apriori算法2
关联规则分析(Apriori算法2
30 0
|
6月前
|
机器学习/深度学习 算法 搜索推荐
关联规则挖掘:Apriori算法的深度探讨
关联规则挖掘:Apriori算法的深度探讨
312 0
|
1月前
|
算法 搜索推荐 网络架构
关联规则分析(算法+画图
关联规则分析(算法+画图
21 0
|
3月前
|
算法 编译器 C语言
learn_C_deep_11 (深刻理解整形提升、左移和右移规则、花括号、++和--操作、表达式匹配:贪心算法)
learn_C_deep_11 (深刻理解整形提升、左移和右移规则、花括号、++和--操作、表达式匹配:贪心算法)
|
3月前
|
算法 数据挖掘
关联规则分析(Apriori算法
关联规则分析(Apriori算法
37 0
|
6月前
|
算法
29MyCat - 分片规则(固定分片hash算法)
29MyCat - 分片规则(固定分片hash算法)
21 0
|
8月前
|
机器学习/深度学习 存储 算法
最邻近规则分类 KNN (K-Nearest Neighbor)算法及python实现
最邻近规则分类 KNN (K-Nearest Neighbor)算法及python实现