JS简单实现决策树(ID3算法)

简介: 推荐阅读:ID3算法 wiki决策树算法及实现完整示例代码:JS简单实现决策树(ID3算法)_demo.html决策树算法代码实现1.
img_876d970d8d4b0c5624b8cbd30239d9b4.png

推荐阅读:
ID3算法 wiki
决策树算法及实现

完整示例代码:
JS简单实现决策树(ID3算法)_demo.html

决策树算法代码实现

1.准备测试数据

这里我假设公司有个小姐姐相亲见面为例
得到以下是已经见面或被淘汰了的数据(部分数据使用mock.js来生成的):

var data =
        [
            { "姓名": "余夏", "年龄": 29, "长相": "帅", "体型": "瘦", "收入": "高", 见面: "见" },
            { "姓名": "豆豆", "年龄": 25, "长相": "帅", "体型": "瘦", "收入": "高", 见面: "见" },
            { "姓名": "帅常荣", "年龄": 26, "长相": "帅", "体型": "胖", "收入": "高", 见面: "见" },
            { "姓名": "王涛", "年龄": 22, "长相": "帅", "体型": "瘦", "收入": "高", 见面: "见" },
            { "姓名": "李东", "年龄": 23, "长相": "帅", "体型": "瘦", "收入": "高", 见面: "见" },
            { "姓名": "王五五", "年龄": 23, "长相": "帅", "体型": "瘦", "收入": "低", 见面: "见" },
            { "姓名": "王小涛", "年龄": 22, "长相": "帅", "体型": "瘦", "收入": "低", 见面: "见" },
            { "姓名": "李缤", "年龄": 21, "长相": "帅", "体型": "胖", "收入": "高", 见面: "见" },
            { "姓名": "刘明", "年龄": 21, "长相": "帅", "体型": "胖", "收入": "低", 见面: "不见" },
            { "姓名": "红鹤", "年龄": 21, "长相": "不帅", "体型": "胖", "收入": "高", 见面: "不见" },
            { "姓名": "李理", "年龄": 32, "长相": "帅", "体型": "瘦", "收入": "高", 见面: "不见" },
            { "姓名": "周州", "年龄": 31, "长相": "帅", "体型": "瘦", "收入": "高", 见面: "不见" },
            { "姓名": "李乐", "年龄": 27, "长相": "不帅", "体型": "胖", "收入": "高", 见面: "不见" },
            { "姓名": "韩明", "年龄": 24, "长相": "不帅", "体型": "瘦", "收入": "高", 见面: "不见" },
            { "姓名": "小吕", "年龄": 28, "长相": "帅", "体型": "瘦", "收入": "低", 见面: "不见" },
            { "姓名": "李四", "年龄": 25, "长相": "帅", "体型": "瘦", "收入": "低", 见面: "不见" },
            { "姓名": "王鹏", "年龄": 30, "长相": "帅", "体型": "瘦", "收入": "低", 见面: "不见" },
        ];

2.搭建决策树基本函数

代码:

function DecisionTree(config) {
    if (typeof config == "object" && !Array.isArray(config)) this.training(config);
};
DecisionTree.prototype = {
    //分割函数
    _predicates: {},
    //统计属性值在数据集中的次数
    countUniqueValues(items, attr) {},
    //获取对象中值最大的Key  假设 counter={a:9,b:2} 得到 "a" 
    getMaxKey(counter) {},
    //寻找最频繁的特定属性值
    mostFrequentValue(items, attr) {},
    //根据属性切割数据集 
    split(items, attr, predicate, pivot) {},
    //计算熵
    entropy(items, attr) {},
    //生成决策树
    buildDecisionTree(config) {},
    //初始化生成决策树
    training(config) {},
    //预测 测试
    predict(data) {},
};

var decisionTree = new DecisionTree();

3.实现函数功能

由于部分函数过于简单我就不进行讲解了
可前往 JS简单实现决策树(ID3算法)_demo.html查看完整代码
里面包含注释,与每个函数的测试方法

这里的话我主要讲解下:计算熵的函数、生成决策树函数(信息增益)、与预测函数的实现

ID3算法 wiki 中解释了计算熵信息增益的公式

img_2efae1bec3a63509d5e1beb8b3fec9ce.jpe
截图

3.1.计算熵(entropy)函数

根据公式:


img_7417a48f0189e3816498d3e305fafc14.png
公式

我们可以知道计算H(S)(也就是熵)需要得到 p(x)=x/总数量 然后进行计算累加就行了
代码:

//......略
//统计属性值在数据集中的次数
countUniqueValues(items, attr) {
    var counter = {}; // 获取不同的结果值 与出现次数
    for (var i of items) {
        if (!counter[i[attr]]) counter[i[attr]] = 0;
        counter[i[attr]] += 1;
    }
    return counter;
},
//......略
//计算熵
entropy(items, attr) {
    var counter = this.countUniqueValues(items, attr); //计算值的出现数
    var p, entropy = 0; //H(S)=entropy=∑(P(Xi)(log2(P(Xi))))
    for (var i in counter) {
        p = counter[i] / items.length; //P(Xi)概率值
        entropy += -p * Math.log2(p); //entropy+=-(P(Xi)(log2(P(Xi))))
    }
    return entropy;
},
//......略
var decisionTree = new DecisionTree();
console.log("函数 countUniqueValues 测试:");
console.log("   长相", decisionTree.countUniqueValues(data, "长相")); //测试
console.log("   年龄", decisionTree.countUniqueValues(data, "年龄")); //测试
console.log("   收入", decisionTree.countUniqueValues(data, "收入")); //测试
console.log("函数 entropy 测试:");
console.log("   长相", decisionTree.entropy(data, "长相")); //测试
console.log("   年龄", decisionTree.entropy(data, "年龄")); //测试
console.log("   收入", decisionTree.entropy(data, "收入")); //测试
3.2.信息增益
img_b009e09dc33b1a21074149f83cb556d5.png
公式

根据公式我们知道要得到信息增益的值需要得到:

  • H(S) 训练集熵
  • p(t)分支元素的占比
  • H(t)分支数据集的熵

其中t我们就先分 match(合适的)on match(不合适),所以H(t):

  • H(match) 分割后合适的数据集的熵
  • H(on match) 分割后不合适的数据集的熵

所以信息增益G=H(S)-(p(match)H(match)+p(on match)H(on match))
因为p(match)=match数量/数据集总项数量
信息增益G=H(S)-((match数量)xH(match)+(on match数量)xH(on match))/数据集总项数量

//......略
buildDecisionTree(config){
    var trainingSet = config.trainingSet;//训练集 
    var categoryAttr = config.categoryAttr;//用于区分的类别属性
    //......略
    //初始计算 训练集的熵
    var initialEntropy = this.entropy(trainingSet, categoryAttr);//<===H(S)
    //......略
    var alreadyChecked = [];//标识已经计算过了
    var bestSplit = { gain: 0 };//储存当前最佳的分割节点数据信息
    //遍历数据集
    for (var item of trainingSet) {
        // 遍历项中的所有属性
        for (var attr in item) {
            //跳过区分属性与忽略属性
            if ((attr == categoryAttr) || (ignoredAttributes.indexOf(attr) >= 0)) continue;
            var pivot = item[attr];// 当前属性的值 
            var predicateName = ((typeof pivot == 'number') ? '>=' : '=='); //根据数据类型选择判断条件
            var attrPredPivot = attr + predicateName + pivot;
            if (alreadyChecked.indexOf(attrPredPivot) >= 0) continue;//已经计算过则跳过
            alreadyChecked.push(attrPredPivot);//记录
            var predicate = this._predicates[predicateName];//匹配分割方式
            var currSplit = this.split(trainingSet, attr, predicate, pivot);
            var matchEntropy = this.entropy(currSplit.match, categoryAttr);//  H(match) 计算分割后合适的数据集的熵
            var notMatchEntropy = this.entropy(currSplit.notMatch, categoryAttr);// H(on match) 计算分割后不合适的数据集的熵
             //计算信息增益: 
             // IG(A,S)=H(S)-(∑P(t)H(t))) 
             // t为分裂的子集match(匹配),on match(不匹配)
             // P(match)=match的长度/数据集的长度
             // P(on match)=on match的长度/数据集的长度
             var iGain = initialEntropy - ((matchEntropy * currSplit.match.length
                        + notMatchEntropy * currSplit.notMatch.length) / trainingSet.length);
              //不断匹配最佳增益值对应的节点信息
              if (iGain > bestSplit.gain) {
                  //......略
              }
        }
    } 
    //......递归计算分支
}

3.3.预测功能

预测功能的话就只要将要预测的值传入,循环去寻找符合条件的分支,直到找到最后的所属分类为止,这里就不详细解释了
代码:

 //......略
//预测 测试
predict(data) {
    var attr, value, predicate, pivot;
    var tree = this.root;
    while (true) {
        if (tree.category) {
            return tree.category;
        }
        attr = tree.attribute;
        value = data[attr];
        predicate = tree.predicate;
        pivot = tree.pivot;
        if (predicate(value, pivot)) {
            tree = tree.match;
        } else {
            tree = tree.notMatch;
        }
    }
}
//......略

4.最后测试

img_a5b67b4bb67c52863414145317bd7a2a.gif
相关文章
|
19天前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
1月前
|
机器学习/深度学习 算法 数据挖掘
请解释Python中的决策树算法以及如何使用Sklearn库实现它。
决策树是监督学习算法,常用于分类和回归问题。Python的Sklearn库提供了决策树实现。以下是一步步创建决策树模型的简要步骤:导入所需库,加载数据集(如鸢尾花数据集),划分数据集为训练集和测试集,创建`DecisionTreeClassifier`,训练模型,预测测试集结果,最后通过`accuracy_score`评估模型性能。示例代码展示了这一过程。
|
1月前
|
机器学习/深度学习 算法
随机森林算法是如何通过构建多个决策树并将它们的预测结果进行投票来做出最终的预测的?
【2月更文挑战第28天】【2月更文挑战第102篇】随机森林算法是如何通过构建多个决策树并将它们的预测结果进行投票来做出最终的预测的?
|
5天前
|
机器学习/深度学习 算法 数据可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
10 0
|
5天前
|
算法 DataX
二叉树(中)+Leetcode每日一题——“数据结构与算法”“剑指Offer55-I. 二叉树的深度”“100.相同的树”“965.单值二叉树”
二叉树(中)+Leetcode每日一题——“数据结构与算法”“剑指Offer55-I. 二叉树的深度”“100.相同的树”“965.单值二叉树”
|
1月前
|
机器学习/深度学习 数据采集 算法
Python基础算法解析:决策树
Python基础算法解析:决策树
36 8
|
1月前
|
机器学习/深度学习 算法 前端开发
瞄准核心因素:Boruta特征选择算法助力精准决策
瞄准核心因素:Boruta特征选择算法助力精准决策
94 0
|
29天前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到&quot;hand.txt&quot;文件。
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的视频手部检测算法matlab仿真
基于yolov2深度学习网络的视频手部检测算法matlab仿真
|
1月前
|
算法
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
23 2