浅谈如何提高自动化测试的稳定性和可维护性(pytest&allure)

  1. 云栖社区>
  2. 博客>
  3. 正文

浅谈如何提高自动化测试的稳定性和可维护性(pytest&allure)

icesword 2018-08-30 17:15:00 浏览522
展开阅读全文

在之前,我写过一个系列“从零开始搭建一个简单的ui自动化测试框架(pytest+selenium+allure)”,在这个系列里,主要介绍了如何从零开始去搭建一个可用的自动化工程框架,但是还缺乏了一些细节的补充,例如对于自动化测试而言,如何提高其测试的稳定性?

本篇文章,将会和读者一起探讨这个问题。

装饰器与出错重试机制

谈到稳定性,不得不说的就是“出错重试”机制了,在自动化测试中,由于环境一般都是测试环境,经常会有各种各种的抽风情况影响测试结果,这样就为测试的稳定性带来了挑战,毕竟谁也不想自己的脚本一天到晚的出各种未知问题,而往往这种环境的抽风(通常是前端页面的响应速度和后端接口的响应速度)带来的影响是暂时的,可能上一秒失败了,下一秒你再执行又好了,在这种情况下,如果你有一个出错重试机制,起码可以在这种暂时性的影响下让你的脚本安然无恙,下面我们具体的说一下做法。

什么是装饰器?

因为我们的做法依赖装饰器,所以在去做之前,先简单介绍一下装饰器。

装饰器,表现形式为,在方法(或者类)的上面加上@xxx这样的语句,假如我们已经实现了一个装饰器名叫retry,那么我们想用它就这么用:

@retry
def test_login():
    print("test")
    error = 1/0

如果retry实现了出错再次重试(稍后再说如何实现),那么这么使用的话,就会让test_login这个case在执行出错的时候再次执行。

很神奇,让我们来看看实现retry的代码:

def retry(func):
    def warp():
        for time in range(3):
            try:
                func()
            except:
                pass
    return warp
    

就结果而言,执行以下代码:

@retry
def test_login():
    print("test")
    error = 1/0

test_login()

和执行:

retry(test_login)()

是等价的,由此我们可以看出,装饰器其实本质上就是一个函数,这个函数接收其他函数(或者类)作为参数,通过对这个函数(或者类)的调用或者修改,完成不更改原始函数而修改该函数的功能。

在这里还有一个知识点,你有没有想过,在retry内部的函数warp(),是怎么拿到func这个参数来执行的?执行retry函数return的是warp这个函数,而warp并没有接受func这个传参啊。

这就是python里的闭包的概念,闭包就是指运行时自带上下文的函数,比如这里的warp这个函数,他运行的时候自带了上层函数retry传给他的func这个函数,所以才可以在运行时对func进行处理和输出。

了解了装饰器和闭包,那么下面就很容易做到对测试用例的出错重试机制了。

编写一个出错重试装饰器

现在,我们来尝试自己编写一个用于测试用例的出错重试装饰器,代码如下:

def retry(times=3,wait_time=10):
    def warp_func(func):
        def fild_retry(*args,**kwargs):
            for time in range(times):
                try:
                    func(*args,**kwargs)
                    return 
                except:
                    time.sleep(wait_time)
        return fild_retry
    return warp_func

这个装饰器可以通过传入重试次数(times)和重试等待时间(wait_time),对待测用例实行重试机制。

pytest里的出错重试机制实现

在测试框架pytest里,已经实现了有关出错重试的策略,我们首先需要安装一个此类的插件,在cmd内执行以下命令安装:

pip install pytest-rerunfailures

如果你需要将此机制应用到所有的用例上,那么请在执行的时候使用如下命令(reruns是重试次数):

pytest --reruns 5

来执行你的用例;

如果你期望加上出错重试的等待时间,请使用如下命令(reruns-delay是等待时间):

pytest --reruns 5 --reruns-delay 1

来执行你的用例;

如果你只想对某几个测试用例应用重试策略,你可以使用装饰器:

@pytest.mark.flaky(reruns=5, reruns_delay=2)

例如:

@pytest.mark.flaky(reruns=5, reruns_delay=2)
def test_example():
    import random
    assert random.choice([True, False])

更详细的介绍请看官方文档

Allure里的测试用例分层

刚刚我们实现了用例的出错重试机制,但是这仅仅解决了脚本在不稳定环境下的稳定性;如果还想要脚本变得更加容易维护,除了传统的po模式使用例和元素分离之外,我们还可以引入测试用例分层机制。

为什么要采用分层机制?

传统的po模式,仅仅实现了用例和元素分离,这一定层面上保障了用例的可维护性,起码不必头疼于元素的变更会让用例到处失效;但是这还不够,例如,现在有三个case,他们都包含了以下步骤:登录、打开工作台、进入个人中心;那么如果不做分层,这三个用例会把这三个步骤都写一遍,如果某天页面的变动导致其中一个步骤需要更改,那么你不得不去每个用例里去更新那个步骤。

而如果,我们把用例当做是堆积木,登录、打开工作台、进入个人中心这三个步骤都只是个积木,那么我们写用例的时候,只需要在用到这个步骤时,把积木搭上去;如果某一天,其中一个积木的步骤有变动,那么只需要去更改这个积木的内容,而无需在每个使用了这个积木的用例里去改动。

这大大增强了用例的复用性和可维护性,这就是采用分层机制的原因,下面,我会就allure里的分层机制做介绍来讨论具体如何实现。

allure的装饰器@step

在allure里,我们可以通过装饰器@step完成分层机制,具体的,当你用@step装饰一个方法时,当你在用例里执行这个方法,会在报告里,表现出这个被装饰方法;而@step支持嵌套结构,这就意味着,你可以像搭积木一样去搭你的步骤,而他们都会一一在报告里被展示。

下面直接用allure的官方示例作做举例:

import allure
import pytest

from .steps import imported_step


@allure.step
def passing_step():
    pass


@allure.step
def step_with_nested_steps():
    nested_step()


@allure.step
def nested_step():
    nested_step_with_arguments(1, 'abc')


@allure.step
def nested_step_with_arguments(arg1, arg2):
    pass


def test_with_imported_step():
    passing_step()
    imported_step()


def test_with_nested_steps():
    passing_step()
    step_with_nested_steps()

运行这个case后,报告是这样的:


img_06e3e92a8a7fd7e9321f7960db40c5b1.png
image

可以看到,
test_with_nested_steps由passing_step()和step_with_nested_steps()这两个方法组成;

而step_with_nested_steps()又由nested_step()组成;

nested_step()又由nested_step_with_arguments(1, 'abc')组成;

这样就像搭积木一样,组成了测试用例;而在报告里,也层级分明的标识了步骤的嵌套结构。

这样,我们就可以通过一个又一个@step装饰的方法,组成测试用例;同时报告里也会支持层级显示;从而完成我们的分层机制。

有关@step的更多详细介绍请参阅官方文档

网友评论

登录后评论
0/500
评论
icesword
+ 关注