AI学习笔记——Sarsa算法

  1. 云栖社区>
  2. 博客>
  3. 正文

AI学习笔记——Sarsa算法

hongtao2018 2018-08-13 06:24:00 浏览705
展开阅读全文

上一篇文章介绍了强化学习中的Q-Learning算法,这篇文章介绍一个与Q-Learning十分类似的算法——Sarsa算法。

1. 回顾Q Learning

还是同样的例子,红色机器人在4x4的迷宫中寻找黄色的宝藏。找到宝藏,将会的到+1的奖励,如果掉进黑色陷阱就回的到-1的奖励(惩罚)。


img_a0db4198159b1117399b4fa43e5b68ee.png

首先回顾一下Q表如下

Q table (States\Actions) left (A1) right (A2) up (A3) down (A4)
S0 -1 3 -1 2
S1 1 2 -1 1
... ... ... ... ..

Q(S0,A2) = Q(S0,A2) + α[R(S1) + γ*maxa Q(S1,a)-Q(S0,A2)]

在Q Learning 算法中,当机器人处于S0的状态时,它的目标Q值是:
R(S1) + γ*maxa Q(S1,a)。此时他还在S0的位置上,但是已经在计算S1上的最大Q值了。但是此时它并没有行动,也不一定会在S1采取Q值最大Q(S1, A2)的行动。因为我们提到,它还有10%的概率随机选择其他的行动 (ε贪婪方法(ε -Greedy method))。

2. Sarsa 行动派

在Sarsa算法中,机器人的目标是

R(S1) + γ*Q(S1,A)

至于A是多少,完全取决于机器人实际上选择的哪一个Action。机器人有90%的概率会选择Q值最大的Action(A2),还有10%的概率会随机选择一个Action。

所以,Sarsa的算法是这样的。


img_fd24f43f0dcb965134ae7cb67f6e09de.png

除了其目标Q值与Q learning 有所不同之外,其他的都是一模一样的。

所以Sarsa是在线学习(On Policy)的算法,因为他是在行动中学习的,使用了两次greedy方法来选择出了Q(S,A)和q(S',A')。而Q learning离线学习(Off Policy)的算法,QLearning选择Q(S,A)用了greedy方法,而计算A(S',A')时用的是max方法,而真正选择的时候又不一定会选择max的行动。

Q learning 通过Max的函数,总是在寻找能最快获得宝藏的道路,所以他比较勇敢。而Sarsa 却相对谨慎。

3. Sarsa-lambda

Q learning 和 Sarsa都是单步更新的算法。单步跟新的算法缺点就是在没有找到宝藏之前,机器人在原地打转的那些行动也被记录在案,并更新了Q表,即便那些行动都是没有意义的。

Lambda(λ)这个衰减系数的引入,就是为了解决这个问题的。与γ用来衰减未来预期Q的值一样,λ是当机器人获得宝藏之后,在更新Q表的时候,给机器人一个回头看之前走过的路程的机会。相当于,机器人每走一步就会在地上插一杆旗子,然后机器人每走一步旗子就会变小一点。
Sarsa-lambda 的完整算法在这里:


img_8b641b30a73d726b8762ed7f2f85cf99.png

注意,该算法与Sarsa 算法不同的地方就是多乘了一个E(s, a) (Eligibility Trace"不可或缺性值"),而这个E(s, a)又同时受γ和λ调控。并且在更新Q表的时候,不仅仅是更新一个Q(S,A),而是整个Q表所有的Q值都被更新了。


文章首发steemit.com 为了方便墙内阅读,搬运至此,欢迎留言或者访问我的Steemit主页

网友评论

登录后评论
0/500
评论
hongtao2018
+ 关注