自制操作系统Antz day09——实现内核 (下) 实现图形化界面

简介:   在前几天的任务中,我们已经简单实现了MBR,直接操作显示器和硬盘操作来加载其他扇区的程序,如今已经可以进入保护模式了,并且编写了我们自己的内核程序,接下来我们要完成界面的图形化,在显示屏中显示鼠标字符桌面,并显示一个终端界面。

  Antz系统更新地址: https://www.cnblogs.com/LexMoon/category/1262287.html

  Linux内核源码分析地址: https://www.cnblogs.com/LexMoon/category/1267413.html

  Github地址:https://github.com/CasterWx 

  在前几天的任务中,我们已经简单实现了MBR,直接操作显示器和硬盘操作来加载其他扇区的程序,如今已经可以进入保护模式了,并且编写了我们自己的内核程序,接下来我们要完成界面的图形化,在显示屏中显示鼠标字符桌面,并显示一个终端界面。

  效果如下:

  

 

  现在我们已经简单实现了半终端半桌面的显示,虽然说非常Low,但也是Antz的一大步了。


 

1.  封装函数

  在前几天我们已经说明了屏幕显示的原理,也就是在显存固定位置写入数据,这对于显卡来说就是像素点。

  如果屏幕显示原理不清楚的可以参考第三天的:http://www.cnblogs.com/LexMoon/p/antz03.html

  为了方便实现图像化,我将显卡写入的代码使用C语言封装成了函数,颜色定义为数组。

View Code

   这个数组对应了我们要显示的颜色RGB值,将数组下标定义对应的枚举值,可以更加方便使用。

  要在显示器显示字体,可以使用putfont8_asc ()函数,它调用了putfont8()函数:   

View Code

  鼠标指针实现是将其呈图形化的写入,函数init_mouse_cursor8():

View Code

  


 

2 . GDT与lDT

  GDT是在32位时16位寻址模式的改造,在学习汇编时,我们所说的 段:偏移量(段x16+偏移量)寻址方式已经不能使用了,所以厂商们使用了GDT,在不改变段寄存器位数的情况下,完成了32位段寻址,就是利用GDT。

(1)全局描述符表GDT(Global Descriptor Table)

  在整个系统中,全局描述符表GDT只有一张(一个处理器对应一个GDT),GDT可以被放在内存的任何位置,但CPU必须知道GDT的入口,也就是基地址放在哪里,Intel的设计者门提供了一个寄存器GDTR用来存放GDT的入口地址,程序员将GDT设定在内存中某个位置之后,可以通过LGDT指令将GDT的入口地址装入此寄存器,从此以后,CPU就根据此寄存器中的内容作为GDT的入口来访问GDT了。GDTR中存放的是GDT在内存中的基地址和其表长界限。

  基地址指定GDT表中字节0在线性地址空间中的地址,表长度指明GDT表的字节长度值。指令LGDT和SGDT分别用于加载和保存GDTR寄存器的内容。在机器刚加电或处理器复位后,基地址被默认地设置为0,而长度值被设置成0xFFFF。在保护模式初始化过程中必须给GDTR加载一个新值。

(2)段选择子(Selector)

  由GDTR访问全局描述符表是通过“段选择子”(实模式下的段寄存器)来完成的。段选择子是一个16位的寄存器(同实模式下的段寄存器相同)

  段选择子包括三部分:描述符索引(index)、TI、请求特权级(RPL)。他的index(描述符索引)部分表示所需要的段的描述符在描述符表的位置,由这个位置再根据在GDTR中存储的描述符表基址就可以找到相应的描述符。然后用描述符表中的段基址加上逻辑地址(SEL:OFFSET)的OFFSET就可以转换成线性地址,段选择子中的TI值只有一位0或1,0代表选择子是在GDT选择,1代表选择子是在LDT选择。请求特权级(RPL)则代表选择子的特权级,共有4个特权级(0级、1级、2级、3级)。

  关于特权级的说明:任务中的每一个段都有一个特定的级别。每当一个程序试图访问某一个段时,就将该程序所拥有的特权级与要访问的特权级进行比较,以决定能否访问该段。系统约定,CPU只能访问同一特权级或级别较低特权级的段。

  例如给出逻辑地址:21h:12345678h转换为线性地址

  a. 选择子SEL=21h=0000000000100 0 01b 他代表的意思是:选择子的index=4即100b选择GDT中的第4个描述符;TI=0代表选择子是在GDT选择;左后的01b代表特权级RPL=1

  b. OFFSET=12345678h若此时GDT第四个描述符中描述的段基址(Base)为11111111h,则线性地址=11111111h+12345678h=23456789h

(3)局部描述符表LDT(Local Descriptor Table)

  局部描述符表可以有若干张,每个任务可以有一张。我们可以这样理解GDT和LDT:GDT为一级描述符表,LDT为二级描述符表。

    

 

  关于GDT于IDT初始化的代码,它们可以实现鼠标的移动,现在我还没有去写它,此次的任务只是显示。

  最新的Antz系统镜像和代码已经上传到我的github了,这里只列举出剩余的主要代码。

#include <stdio.h>
struct BOOTINFO {
    char cyls, leds, vmode, reserve;
    short scrnx, scrny;
    char *vram;
};

struct SEGMENT_DESCRIPTOR {
    short limit_low, base_low;
    char base_mid, access_right;
    char limit_high, base_high;
};

struct GATE_DESCRIPTOR {
    short offset_low, selector;
    char dw_count, access_right;
    short offset_high;
};

void init_gdtidt(void);
void set_segmdesc(struct SEGMENT_DESCRIPTOR *sd, unsigned int limit, int base, int ar);
void set_gatedesc(struct GATE_DESCRIPTOR *gd, int offset, int selector, int ar);
void load_gdtr(int limit, int addr);
void load_idtr(int limit, int addr);

void HariMain(void)
{
    struct BOOTINFO *binfo = (struct BOOTINFO *) 0x0ff0;
    char s[40], mcursor[256];
    int mx, my;

    init_palette();
    init_screen(binfo->vram, binfo->scrnx, binfo->scrny);


    mx = (binfo->scrnx - 16) / 2; /* 计算画面的中心坐标*/
    my = (binfo->scrny - 28 - 16) / 2;
    init_mouse_cursor8(mcursor, COL8_00FFFF);
    putblock8_8(binfo->vram, binfo->scrnx, 16, 16, mx+20, my, mcursor, 16);
    for (;;) {
        io_hlt();
    }
}

void set_palette(int start, int end, unsigned char *rgb)
{
    int i, eflags;
    eflags = io_load_eflags();    /* 记录中断许可标志的值 */
    io_cli();                     /* 将中断许可标志置为0,禁止中断 */
    io_out8(0x03c8, start);
    for (i = start; i <= end; i++) {
        io_out8(0x03c9, rgb[0] / 4);
        io_out8(0x03c9, rgb[1] / 4);
        io_out8(0x03c9, rgb[2] / 4);
        rgb += 3;
    }
    io_store_eflags(eflags);    /* 复原中断许可标志 */
    return;
}

void boxfill8(unsigned char *vram, int xsize, unsigned char c, int x0, int y0, int x1, int y1)
{
    int x, y;
    for (y = y0; y <= y1; y++) {
        for (x = x0; x <= x1; x++)
            vram[y * xsize + x] = c;
    }
    return;
}

void init_screen(char *vram, int x, int y)
{
    boxfill8(vram, x, COL8_00FFFF,  0,     0,      x,         y);
    boxfill8(vram, x, COL8_C6C6C6,  0,     0,     x/2,   y);
    boxfill8(vram, x, COL8_000000,  3,     15,     x/2-3, y-3);

    boxfill8(vram, x, COL8_008400,  165    ,     30,     215,     40);
    boxfill8(vram, x, COL8_008400,  265    ,     30,     315,     40);

    boxfill8(vram, x, COL8_008400,  190    ,     60,     200,     70);
    boxfill8(vram, x, COL8_008400,  280    ,     60,     290,     70);

    boxfill8(vram, x, COL8_008400,  235    ,     65,     245,     100);

    boxfill8(vram, x, COL8_008400,  235-15    ,     65+40,     245-15,     85+30);
    boxfill8(vram, x, COL8_008400,  235    ,     65+40,     245,     85+30);
    boxfill8(vram, x, COL8_008400,  235+15    ,     65+40,     245+15,     85+30);

    boxfill8(vram, x, COL8_008400,  200    ,     130,     280,     140);
    boxfill8(vram, x, COL8_008400,  200    ,     130,     210,     160);
    boxfill8(vram, x, COL8_008400,  270    ,     130,     280,     160);
    boxfill8(vram, x, COL8_008400,  200    ,     150,     280,     160);

    return;
}

void putfont8(char *vram, int xsize, int x, int y, char c, char *font)
{
    int i;
    char *p, d /* data */;
    for (i = 0; i < 16; i++) {
        p = vram + (y + i) * xsize + x;
        d = font[i];
        if ((d & 0x80) != 0) { p[0] = c; }
        if ((d & 0x40) != 0) { p[1] = c; }
        if ((d & 0x10) != 0) { p[3] = c; }
        if ((d & 0x20) != 0) { p[2] = c; }
        if ((d & 0x08) != 0) { p[4] = c; }
        if ((d & 0x04) != 0) { p[5] = c; }
        if ((d & 0x02) != 0) { p[6] = c; }
        if ((d & 0x01) != 0) { p[7] = c; }
    }
    return;
}

void putfonts8_asc(char *vram, int xsize, int x, int y, char c, unsigned char *s)
{
    extern char hankaku[4096];
    /* C语言中,字符串都是以0x00结尾 */
    for (; *s != 0x00; s++) {
        putfont8(vram, xsize, x, y, c, hankaku + *s * 16);
        x += 8;
    }
    return;
}

void init_mouse_cursor8(char *mouse, char bc)
/* マウスカーソルを準備(16x16) */
{
    static char cursor[16][16] = {
    //鼠标图形
    };
    int x, y;

    for (y = 0; y < 16; y++) {
        for (x = 0; x < 16; x++) {
            if (cursor[y][x] == '*') {
                mouse[y * 16 + x] = COL8_000000;
            }
            if (cursor[y][x] == 'O') {
                mouse[y * 16 + x] = COL8_FFFFFF;
            }
            if (cursor[y][x] == '.') {
                mouse[y * 16 + x] = bc;
            }
        }
    }
    return;
}

void putblock8_8(char *vram, int vxsize, int pxsize,
    int pysize, int px0, int py0, char *buf, int bxsize)
{
    int x, y;
    for (y = 0; y < pysize; y++) {
        for (x = 0; x < pxsize; x++) {
            vram[(py0 + y) * vxsize + (px0 + x)] = buf[y * bxsize + x];
        }
    }
    return;
}

 

目录
相关文章
|
22天前
|
消息中间件 存储 算法
【软件设计师备考 专题 】操作系统的内核(中断控制)、进程、线程概念
【软件设计师备考 专题 】操作系统的内核(中断控制)、进程、线程概念
66 0
|
3月前
|
Go 调度
go-issues#14592 runtime: let idle OS threads exit 内核线程暴增与线程回收问题
go-issues#14592 runtime: let idle OS threads exit 内核线程暴增与线程回收问题
25 0
|
6月前
|
存储 缓存 Linux
操作系统与内核、系统编程与应用编程
操作系统与内核、系统编程与应用编程
61 0
|
2月前
|
Linux
操作系统 | 编写内核
操作系统 | 编写内核
43 0
|
2月前
|
C语言
操作系统 | 编写内核模块
操作系统 | 编写内核模块
33 1
|
27天前
|
算法 Linux 调度
根基已筑!Anolis OS 23.1 预览版本搭载 Linux 6.6 内核和工具链升级完成
Anolis OS 23.1 对软件包的选择和组合进行了重新规划与决策,满足更为广泛的应用场景需求。
|
5月前
|
测试技术 KVM 开发工具
【OS Pintos】Pintos 内核库基本数据结构 | 运行测试用例 alarm-multiple
【OS Pintos】Pintos 内核库基本数据结构 | 运行测试用例 alarm-multiple
73 0
|
2月前
|
IDE Linux 开发工具
DP读书:鲲鹏处理器 架构与编程(十三)操作系统内核与云基础软件
DP读书:鲲鹏处理器 架构与编程(十三)操作系统内核与云基础软件
66 1
|
3月前
手写操作系统 - 操作系统内核突破512字节
手写操作系统 - 操作系统内核突破512字节
|
5月前
|
存储 Unix Java
探索操作系统:内核、启动和系统调用的奥秘
操作系统是计算机不可或缺的一部分,它连接着硬件和应用程序。内核是操作系统的核心,负责管理进程和线程、内存、硬件设备以及提供系统调用接口。计算机启动过程中,ROM负责加载并执行BIOS程序,而RAM用于存储运行中的程序和数据。系统调用是操作系统提供给应用程序的接口,通过系统调用可以访问操作系统的功能。系统调用相当于一个办事大厅,应用程序需要通过系统调用来完成特定的操作或获取特定的服务。