Java多线程——ThreadLocal源码解析

简介:

ThreadLocal

这个类提供线程局部变量。这些变量在每一个线程中的正常副本都不相同,每一个线程访问一个副本(通过其 get或 set法),副本有自己独立的变量初始化复制。ThreadLocal实例通常是类中私有的静态字段希望关联状态和线程(例如,一个用户ID或交易ID)。

例如,下面的类为每个线程生成唯一的标识符。一个线程的ID在第一次调用ThreadId.get()时分配并且在后续调用中保持不变。

 public class ThreadId {
     // Atomic integer containing the next thread ID to be assigned
     private static final AtomicInteger nextId = new AtomicInteger(0);

     // Thread local variable containing each thread's ID
     private static final ThreadLocal<Integer> threadId =
         new ThreadLocal<Integer>() {
             @Override protected Integer initialValue() {
                 return nextId.getAndIncrement();
         }
     };

     // Returns the current thread's unique ID, assigning it if necessary
     public static int get() {
         return threadId.get();
     }
 }

每一个线程在活着的时候就持有一个暗示对它线程本地变量拷贝的引用并且ThreadLocal实例可以访问;线程死去后它的线程本地实例拷贝受垃圾回收管辖(除非存在其他对这些副本引用)。

——以上是对ThreadLocal注释的翻译

ThreadLocal是作为key值存储在ThreadLocalMap里面的,而ThreadLocalMap是一个典型的hash表,它的实例存储在了Thread.threadLocals,并且由于并非所有线程实例都需要用到threadLocals,它是懒汉式的初始化,在第一次插入时才会初始化创建ThreadLocalMap实例。输入的value是一个泛型对象,它可以是Integer、Double等基本装箱类型,也可以是自定义的bean类,可以认为Thread实例t拥有一个ThreadLocalMap实例threadLocals,它是一个hash表,它以ThreadLocal的实例作为key值,以具体内容泛型变量value作为value值,每个线程在存活期间有自己的ThreadLocalMap实例,所以各线程间互不干涉。

public class ThreadLocalTest {
    ThreadLocal<Long> longLocal = new ThreadLocal<Long>();
    ThreadLocal<String> stringLocal = new ThreadLocal<String>();

    public void set() {
        longLocal.set(Thread.currentThread().getId());
        stringLocal.set(Thread.currentThread().getName());
    }

    public long getLong() {
        return longLocal.get();
    }

    public String getString() {
        return stringLocal.get();
    }

    public static void main(String[] args) throws InterruptedException {
        final ThreadLocalTest test = new ThreadLocalTest();

        test.set();
        System.out.println(test.getLong());
        System.out.println(test.getString());

        Thread thread1 = new Thread() {
            public void run() {
                test.set();
                System.out.println(test.getLong());
                System.out.println(test.getString());
            };
        };
        thread1.start();
        thread1.join();

        System.out.println(test.getLong());
        System.out.println(test.getString());
        /*1
        main
        11
        Thread-0
        1
        main*/
    }
}

构造函数

因为ThreadLocal的作用是提供实例作为key值,它需要提供的内部变量就是hashcode,而hashcode是由别的方法生成,所以构造函数除了初始化实例外什么也不做

    public ThreadLocal() {
    }

set

set方法设置当前线程的线程本地变量副本为指定的值。大部分子类不需要重写这个方法,只依靠initialValue来设置线程本地变量值。先获取当前线程中的ThreadLocalMap实例,然后检查是否为null。还没有创建的话需要先新创建一个,将这个ThreadLoca和value值放入map中。

    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

    /**
     * 获取关联ThreadLocal的map。在InheritableThreadLocal中重写。
     */
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

    /**
     * 创建一个关联ThreadLocal的map。在InheritableThreadLocal中重写。
     */
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }

get

get返回这个线程本地变量在当前线程中的副本值。如果这个变量在当前线程中没有值,第一次通过调用initialValue初始化这个值并返回。

    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();//map不存在或map中没有这个对象时调用setInitialValue
    }

setInitialValue方法是set方法的变体,用于创建初始化值。如果用户已经重写了set方法,可以用作set方法的替代。

    private T setInitialValue() {
        T value = initialValue();//未重写直接返回null
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }

initialValue返回此线程局部变量的“初始值”。该方法将在一个线程第一次用get方法访问变量时被调用,除非线程之前调用了 set方法,在这种情况下, initialValue方法不会被这个线程调用。通常情况下,这种方法是每个线程调用一次,但它可能在后续调用get随后调用remove而再次调用。这种实现简单的返回null;如果程序员渴望线程局部变量有一个初始值而不是null,ThreadLocal必须有子类,并重写这个方法。通常情况下,将使用一个匿名内部类。简单来说,如果未set这个ThreadLocal的value值而直接调用get会导致在map中添加一个初始化的value值,如果没有重写ThreadLocal中的这个方法,那么初始值是null

    protected T initialValue() {
        return null;
    }

remove

remove方法移除当前线程的线程本地变量值。如果这个线程本地变量随后被当前线程用get方法读取,它的值会被initialValue重新初始化,除非这之间当前线程调用了set方法。这可能会导致当前线程中多次调用initialValue方法。

     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)//map未初始化时什么都不做
             m.remove(this);
     }

ThreadLocalMap

ThreadLocalMap是ThreadLocal的内部类,是一个典型的hash表,只适合存储线程本地变量。没有操作暴露到ThreadLocal类外部。这个类是包私有的,允许在Thread中声明字段。为了帮助解决非常大并且长期存活的使用,hash表条目对key使用WeakReference。然而,因为没有使用引用队列,旧的条目只在表用完空间时才保证移除。

Entry

ThreadLocalMap的条目也是自己实现的。这个hash表的条目扩展了WeakReference,使用它的只要引用字段作为k(总是ThreadLocal对象)。注意null的key值(比如entry.get() == null)意味着key不再被引用,因此条目可以从表删除。这样的条目作为“旧条目”在下方代码中被引用。ThreadLocal是弱引用,而value是强引用,如果创建ThreadLocal的线程一直持续运行,那么这个Entry对象中的value就有可能一直得不到回收,发生内存泄露。

        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** 关联这个ThreadLocal的值 */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
                super(k);//将ThreadLocal作为key用于构造WeakReference
                value = v;
            }
        }

内部变量和构造函数

table是存储条目的数组,初始大小一定是16

        /**
         * 初始容量,必需是2的指数次
         */
        private static final int INITIAL_CAPACITY = 16;

        /**
         * 表,有必要的话需要resize。table.length必须总是2的指数次
         */
        private Entry[] table;

        /**
         * 表中条目的数量
         */
        private int size = 0;

        /**
         * 到达后要进行resize的大小
         */
        private int threshold; // Default to 0

构造函数前面在createMap(Thread, T)中已经提到过,创建一个新的map初始化包含firstKey, firstValue)。ThreadLocalMap是懒汉式构建,因此我们只有当有至少一个条目要放入时再创建一个。负载因子至少是2/3。

        ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

        /**
         * 设置resize的门槛保证最差有2/3的负载因子
         */
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

还有一个版本是创建一个新的map包含所有来自父map的可继承的ThreadLocal。只会由createInheritedMap调用。因为较少使用就不说了。

getEntry

getEntry获取和key关联的条目。这个方法本身只处理快速通道:已有key直接命中,否则会转移到getEntryAfterMiss。这种设计是为了最大化直接命中的效率,部分通过使这个方法容易非线性读取来实现。

        private Entry getEntry(ThreadLocal<?> key) {
            int i = key.threadLocalHashCode & (table.length - 1);//根据hash值计算出直接命中的位置
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;//命中
            else
                return getEntryAfterMiss(key, i, e);//未命中
        }

如果直接目标未命中,需要getEntryAfterMiss来进行线性探测。由于散列的hash值碰撞情况很小,所以比起直接用循环查找的方法效率更高。在线性探测过程中,移动就是最简单的移动到尾部循环至头部,如果发现ThreadLocal为null说明已经被移除,需要删除这个结点的引用使得可以进行回收。

        private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal<?> k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);//不再有引用了,需要删除
                else
                    i = nextIndex(i, len);//向后移动一位
                e = tab[i];
            }
            return null;
        }

        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }

hash

刚才提到了hash和表中对象的关系,那么要研究下ThreadLocalMap的hash值是怎么设计的。首先,要明确的一点是ThreadLocalMap使用的是开放地址法线性探测解决hash碰撞的问题,而hash值是在ThreadLocal中的。我们可以看到ThreadLocal中跟hash值计算有关的部分,用一个AtomicInteger来计算,是static也就是说有一个静态的值每新建一个ThreadLocal实例就会增加,但增加的间隔并不是1,而是0x61c88647,这个值得选取是为了减少碰撞的发生,具体原理和斐波那契散列法以及黄金分割有关。 所以,对于同样的ThreadLocal变量,各线程的ThreadLocalMap中它们都处于同一个数组位置。因此,还是建议每个线程只存一个变量,这样的话所有的线程存放到map中的Key都是相同的ThreadLocal,如果一个线程要保存多个变量,就需要创建多个ThreadLocal,多个ThreadLocal放入Map中时会极大的增加hash冲突的可能。如果必须使用多个变量,0x61c88647可以尽可能减少冲突的发生。因为表的大小永远是2的指数次,所以和len-1进行位与操作等价为直接取模。

    /**
     * ThreadLocal依赖每个线程线性探测hash表关联到每个线程(Thread.threadLocals和inheritableThreadLocals)。
     * ThreadLocal对象作为key,通过threadLocalHashCode来查找。
     * 这是一个典型的hash值(只在ThreadLocalMaps内有用)消除当同样的线程连续创建ThreadLocal实例常见状况下的冲突,同时不太常见的状况也是良性的。
     */
    private final int threadLocalHashCode = nextHashCode();

    /**
     * 下一个要给出的hash值,自动更新,从0开始。
     */
    private static AtomicInteger nextHashCode =
        new AtomicInteger();

    /**
     * 连续产生的hash值之间的差值-使得连续的线程本地ID变得隐式连续,接近最佳地扩展到大小是2的指数次表的乘法倍数的hash值上。
     */
    private static final int HASH_INCREMENT = 0x61c88647;//‭0110 0001 1100 1000 1000 0110 0100 0111‬

    /**
     * 返回下一个hash值
     */
    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }

set

set没有像get那样使用快速路径是因为使用set创建一个新的条目至少和替换一个已有的是一样频率,这样快速路径会经常失败。set会从hash对应的位置开始线性查找指定的key值,如果找到entry存在但key为null的位置说明已经被remove,使用replaceStaleEntry替换过时的值。如果找到了这个key值则替换已有值。如果找到了entry为null的位置说明还未被使用过,直接新建一个entry放到这个位置上。

        private void set(ThreadLocal<?> key, Object value) {

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();

                if (k == key) {
                    e.value = value;//替换已有值
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);//替换过时的值
                    return;
                }
            }

            tab[i] = new Entry(key, value);//hash值对应的位置没有插入过元素
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

replaceStaleEntry用一个有指定key的条目替换在set操作中遇到的过时条目。value参数传递的值存储在条目中,无论有这个key的条目是否已经存在。作为一个副作用,这个方法擦除了一趟中所有过时的条目(一趟指两个entry为null位置间的序列)。新的条目放在staleSlot位置上,而从这个位置开始向前和向后倒两个entry为null的位置之间所有key为null的条目都会被清除。

        private void replaceStaleEntry(ThreadLocal<?> key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            //返回检查当前趟中之前的过期条目。我们一次清除整个趟避免因为垃圾回收释放串中的引用而频繁增加的rehash
            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))//从staleSlot开始向前直到entry为null的位置为止最靠前的引用为null的条目
                if (e.get() == null)
                    slotToExpunge = i;

            //寻找key或者趟里后面null位置两者中先发生的
            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {//循环从staleSlot向后倒entry为null的位置
                ThreadLocal<?> k = e.get();

                //如果找到key,我们需要交换它和过期条目来保持hash表顺序。新的过期位置或者在它之前任何其他过期位置,
                //可以被发送给expungeStaleEntry来移除或者rehash趟中的其他所有条目
                if (k == key) {//找到了set操作中要插入的key
                    e.value = value;

                    tab[i] = tab[staleSlot];//将key相同的结点与staleSlot位置的结点交换
                    tab[staleSlot] = e;

                    // 如果有的话开始擦除先前的过期结点
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);//第一个参数是从slotToExpunge到下一个null的位置,第二个参数是table长度
                    return;
                }

                //向前查找没有找到过期条目,在查找key时第一个发现的过期条目还是趟中的第一个
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }

            // 如果没有找到key,将新的条目放在过期的位置
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);

            // 如果这一趟中还有其他过期条目,擦除它们
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }

expungeStaleEntry通过rehash任何在staleSlot与下一个null位置之间可能冲突条目来擦除过期条目。这也擦除了在随后的null之前遇到的所有其他过期条目。返回staleSlot之后下一个null的位置(在staleSlot和这个位置之间的都被检查是否要擦除)。

        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // 擦除在staleSlot的条目
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // 直到遇到null之前rehash
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();
                if (k == null) {//key为null说明已经被remove,删除其他数据
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {//key存在,移动到接近hash直接定位的地方
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

cleanSomeSlots检查log2(n)个位置,除非找到了一个过期条目,额外检查log2(table.length)-1个位置。插入时调用这个参数是元素个数,replaceStaleEntry调用时这个参数是table的大小。

        private boolean cleanSomeSlots(int i, int n) {
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) {//找到过期的条目需要清除
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);
                }
            } while ( (n >>>= 1) != 0);//n=n/2
            return removed;
        }

set在新增一个条目到没有使用过的位置时,导致size增加,同时会触发rehash。会清空所有过期的条目,并根据size大小判断是否需要扩大数组,如果要扩大数组则数组大小*2。

        private void rehash() {
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();//size达到了resize的大小,扩大数组
        }

        /**
         * 两倍扩大表
         */
        private void resize() {
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (int j = 0; j < oldLen; ++j) {
                Entry e = oldTab[j];
                if (e != null) {
                    ThreadLocal<?> k = e.get();
                    if (k == null) {
                        e.value = null; // Help the GC
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }

        /**
         * 清除表中稳定所有过期条目
         */
        private void expungeStaleEntries() {
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) {
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            }
        }
    }

remove

移除key对应的条目,直接通过线性探测法找到对应的key值,条目调用clear()方法后key会变为null但条目仍然存在,通过expungeStaleEntry(int)将table中这个位置置为null,并且gc可以回收这个条目。当线程终止时,它的ThreadLocal对象引用会变为null,那么在后续使用中table中不再有引用的条目会被垃圾回收,但是如果线程长时间存活但ThreadLocal对象不再被使用,需要显示的调用remove方法,避免内存泄漏。

        private void remove(ThreadLocal<?> key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {//线性查找hash值相等的条目
                if (e.get() == key) {
                    e.clear();//清除引用
                    expungeStaleEntry(i);//删掉过期条目
                    return;
                }
            }
        }
相关文章
|
1天前
|
Java
并发编程之线程池的底层原理的详细解析
并发编程之线程池的底层原理的详细解析
7 0
|
1天前
|
监控 Java
并发编程之线程池的详细解析
并发编程之线程池的详细解析
5 0
|
1天前
|
Java
并发编程之线程池的应用以及一些小细节的详细解析
并发编程之线程池的应用以及一些小细节的详细解析
10 0
|
4天前
|
安全 Java
深入理解 Java 多线程和并发工具类
【4月更文挑战第19天】本文探讨了Java多线程和并发工具类在实现高性能应用程序中的关键作用。通过继承`Thread`或实现`Runnable`创建线程,利用`Executors`管理线程池,以及使用`Semaphore`、`CountDownLatch`和`CyclicBarrier`进行线程同步。保证线程安全、实现线程协作和性能调优(如设置线程池大小、避免不必要同步)是重要环节。理解并恰当运用这些工具能提升程序效率和可靠性。
|
5天前
|
安全 Java
java多线程(一)(火车售票)
java多线程(一)(火车售票)
|
5天前
|
安全 Java 调度
Java并发编程:深入理解线程与锁
【4月更文挑战第18天】本文探讨了Java中的线程和锁机制,包括线程的创建(通过Thread类、Runnable接口或Callable/Future)及其生命周期。Java提供多种锁机制,如`synchronized`关键字、ReentrantLock和ReadWriteLock,以确保并发访问共享资源的安全。此外,文章还介绍了高级并发工具,如Semaphore(控制并发线程数)、CountDownLatch(线程间等待)和CyclicBarrier(同步多个线程)。掌握这些知识对于编写高效、正确的并发程序至关重要。
|
5天前
|
安全 Java 程序员
Java中的多线程并发编程实践
【4月更文挑战第18天】在现代软件开发中,为了提高程序性能和响应速度,经常需要利用多线程技术来实现并发执行。本文将深入探讨Java语言中的多线程机制,包括线程的创建、启动、同步以及线程池的使用等关键技术点。我们将通过具体代码实例,分析多线程编程的优势与挑战,并提出一系列优化策略来确保多线程环境下的程序稳定性和性能。
|
6天前
|
调度 Python
Python多线程、多进程与协程面试题解析
【4月更文挑战第14天】Python并发编程涉及多线程、多进程和协程。面试中,对这些概念的理解和应用是评估候选人的重要标准。本文介绍了它们的基础知识、常见问题和应对策略。多线程在同一进程中并发执行,多进程通过进程间通信实现并发,协程则使用`asyncio`进行轻量级线程控制。面试常遇到的问题包括并发并行混淆、GIL影响多线程性能、进程间通信不当和协程异步IO理解不清。要掌握并发模型,需明确其适用场景,理解GIL、进程间通信和协程调度机制。
24 0
|
6天前
|
缓存 分布式计算 监控
Java并发编程:深入理解线程池
【4月更文挑战第17天】在Java并发编程中,线程池是一种非常重要的技术,它可以有效地管理和控制线程的执行,提高系统的性能和稳定性。本文将深入探讨Java线程池的工作原理,使用方法以及在实际开发中的应用场景,帮助读者更好地理解和使用Java线程池。
|
6天前
|
存储 安全 Java
Java中的容器,线程安全和线程不安全
Java中的容器,线程安全和线程不安全
15 1

热门文章

最新文章

推荐镜像

更多