消息中间件系列一、消息中间件的基本了解

  1. 云栖社区>
  2. 博客>
  3. 正文

消息中间件系列一、消息中间件的基本了解

我巴巴 2018-10-03 20:15:18 浏览2902
展开阅读全文

前言:这是中间件一个系列的文章之一,有需要的朋友可以看看这个系列的其他文章:
消息中间件系列一、消息中间件的基本了解
消息中间件系列二、Windows下的activeMQ和rabbitMQ的安装
消息中间件系列三、JMS和activeMQ的简单使用
消息中间件系列四、认识AMQP和RabbiyMq的简单使用
消息中间件系列五、rabbit消息的确认机制
消息中间件系列六,rabbit与spring集成实战

一、消息中间件的定义:

  没有标准定义,一般认为,采用消息传送机制/消息队列 的中间件技术,进行数据交流,用在分布式系统的集成

二、为什么要用消息中间件?

解决分布式系统之间消息的传递。
电商场景:
  用户下单减库存,调用物流系统,系统扩充后服务化和业务拆分。系统交互,一般用RPC(远程过程调用)。如果系统扩充到有几十个接口,消息中间件来解决问题。

三、消息中间件有哪些使用场景?

1、异步处理

场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种 1.串行的方式;2.并行方式

(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端

820332_20160124211106000_2080222350

(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间

820332_20160124211115703_218873208

假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。

小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:

820332_20160124211131625_1083908699

按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍

2、应用的解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图

820332_20160124211254187_1511483255

传统模式的缺点:

  • 假如库存系统无法访问,则订单减库存将失败,从而导致订单失败
  • 订单系统与库存系统耦合
如何解决以上问题呢?引入应用消息队列后的方案,如下图:

820332_20160124211307687_1914946501

  • 订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功
  • 库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作
  • 假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦

3、流量的削峰

流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛

应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。

  • 可以控制活动的人数
  • 可以缓解短时间内高流量压垮应用

820332_20160124211333125_923847962

  • 用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面
  • 秒杀业务根据消息队列中的请求信息,再做后续处理

4、日志处理

日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下

820332_20160124211436718_1054529852

  • 日志采集客户端,负责日志数据采集,定时写受写入Kafka队列
  • Kafka消息队列,负责日志数据的接收,存储和转发
  • 日志处理应用:订阅并消费kafka队列中的日志数据

以下是新浪kafka日志处理应用案例:转自(http://cloud.51cto.com/art/201507/484338.htm
820332_20160124211447875_1251492581
(1)Kafka:接收用户日志的消息队列

(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch

(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能

(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因

5、纯粹的消息通信

消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等
点对点通讯:
820332_20160124211500718_1411703435
客户端A和客户端B使用同一队列,进行消息通讯。
聊天室通讯:
820332_20160124211511859_1166529202
客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。

网友评论

登录后评论
0/500
评论
我巴巴
+ 关注