翻译小组 关注
手机版

图像数据增强方法一览(附python代码)

  1. 云栖社区>
  2. 翻译小组>
  3. 博客>
  4. 正文

图像数据增强方法一览(附python代码)

【方向】 2018-09-25 23:46:49 浏览717 评论0

摘要: 还在为数据集大小发愁吗?试试数据增强方法吧。

       在图像分类任务中,图像数据增强一般是大多数人会采用的方法之一,这是由于深度学习对数据集的大小有一定的要求,若原始的数据集比较小,无法很好地满足网络模型的训练,从而影响模型的性能,而图像增强是对原始图像进行一定的处理以扩充数据集,能够在一定程度上提升模型的性能。本文是我目前正在研究一项内容,总结图像数据增强的一些方法及其有效性。本研究的目的是学习如何增加训练数据集的大小,通过有限或少量数据来训练获得具有鲁棒性的卷积网络模型。
       这项研究要求列出我们可以想到的所有图像增强方法,并列举出所有这些组合,以尝试和改善图像分类模型的性能。那么,能够想到的一些最简单的增强方法有翻转、平移、旋转、缩放,分离单个r、g、b三个颜色通道以及添加噪声。更激动人心的增强方法是比较热门的使用生成对抗网络模型,有时交替使用遗传算法和生成对抗网络。此外,还提出了一些创造性方法,例如将类似于Instagram中的高亮滤镜应用于图像、应用随机区域锐化滤镜,以及基于聚类技术添加平均图像等。本文将展示如何使用NumPy对图像进行扩充。
       下面是上述提到的增强技术的总结及说明,如果你能想到其它任何方法来增强图像,并可以提高图像分类器的性能,请在留言区评论。

1
原始图像

增强

       所有的数据增强都是在没有OpenCV库的情况下,使用Numpy完成。

# Image Loading Code used for these examples
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img = Image.open('./NIKE.png')
img = np.array(img)
plt.imshow(img)
plt.show()

翻转|Flipping

       对图像进行翻转是最流行的图像数据增强方法之一。这主要是由于翻转图像操作的代码简单,以及对于大多数问题而言,对图像进行翻转操作能够提升模型的性能。下面的模型可以被认为是看到左鞋而不是右鞋,因此通过这种数据增加,模型对于看到鞋的潜在变化会变得更加鲁棒。

2

# Flipping images with Numpy
flipped_img = np.fliplr(img)
plt.imshow(flipped_img)
plt.show()

平移|Translations

       很容易想象对完成检测任务的分类器进行平移增强能够提升其性能,好像这个分类模型试图检测鞋子何时在图像中而不是是否在图像中。这些平移操作将有助于它在无法看清整个鞋子的情况下认出鞋子来。

3左移

# Shifting Left
for i in range(HEIGHT, 1, -1):
  for j in range(WIDTH):
     if (i < HEIGHT-20):
       img[j][i] = img[j][i-20]
     elif (i < HEIGHT-1):
       img[j][i] = 0
plt.imshow(img)
plt.show()

4
右移

# Shifting Right
for j in range(WIDTH):
  for i in range(HEIGHT):
    if (i < HEIGHT-20):
      img[j][i] = img[j][i+20]
plt.imshow(img)
plt.show()

5
上移

# Shifting Up
for j in range(WIDTH):
  for i in range(HEIGHT):
    if (j < WIDTH - 20 and j > 20):
      img[j][i] = img[j+20][i]
    else:
      img[j][i] = 0
plt.imshow(img)
plt.show()

6
下移

#Shifting Down
for j in range(WIDTH, 1, -1):
  for i in range(278):
    if (j < 144 and j > 20):
      img[j][i] = img[j-20][i]
plt.imshow(img)
plt.show()

加噪|Noise

       对图像加噪音是一种有趣的图像增强技术,现在我开始对这类操作变得更加熟悉。我已经看过很多关于对抗网络训练的有趣论文,当将一些噪音加入到图像后,模型无法对图像进行正确分类。我仍然在寻找能产生比下图更好的加噪方法。添加噪声可能有助于使得畸变更加明显,并使得模型更加鲁棒。

7
加噪

# ADDING NOISE
noise = np.random.randint(5, size = (164, 278, 4), dtype = 'uint8')

for i in range(WIDTH):
    for j in range(HEIGHT):
        for k in range(DEPTH):
            if (img[i][j][k] != 255):
                img[i][j][k] += noise[i][j][k]
plt.imshow(img)
plt.show()

生成对抗网络|GAN:

       我阅读了很多关于生成对抗网络的文献,文献中很多都使用生成对抗网络进行数据增强,我对此也比较感兴趣,下面是我使用MNIST数据集生成的一些图像。

8
GAN生成图像


       正如我们从上图中看到的,它们确实看起来像数字3、7和9,但实际上,将其送进数字手写体分类器中,它们并不能被识别为对应的数字。
       感谢你阅读本文,希望你现在知道如何实现对基本数据进行扩充,以改进自己搭建的分类模型!

作者信息

Connor Shorten,对深度学习、算法理论和生物信息学感兴趣
本文由阿里云云栖社区组织翻译。
文章原标题《Image Augmentation Examples in Python》,译者:海棠,审校:Uncle_LLD。
文章为简译,更为详细的内容,请查看原文

【云栖快讯】你想见的Java技术专家都在这了,向大佬提问,有问题必答  详情请点击

网友评论

【方向】
文章678篇 | 关注1142
关注
阿里云机器学习是基于阿里云分布式计算引擎的一款机器学习算法平台。用户通过拖拉拽的方式可视化的... 查看详情
MySQL 是全球最受欢迎的开源数据库,阿里云MySQL版 通过深度的内核优化和独享实例提供... 查看详情
提供一种性能卓越、稳定、安全、便捷的计算服务,帮助您快速构建处理能力出色的应用,解放计算给服... 查看详情
为您提供简单高效、处理能力可弹性伸缩的计算服务,帮助您快速构建更稳定、安全的应用,提升运维效... 查看详情
阿里云总监课正式启航

阿里云总监课正式启航