C语言中的指针和内存泄漏

简介:

引言


对于任何使用 C 语言的人,如果问他们 C 语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏。这些的确是消耗了开发人员大多数调试时间的事项。指针和内存泄漏对某些开发人员来说似乎令人畏惧,但是一旦您了解了指针及其关联内存操作的基础,它们就是您在 C 语言中拥有的最强大工具。


本文将与您分享开发人员在开始使用指针来编程前应该知道的秘密。本文内容包括:


●导致内存破坏的指针操作类型


●在使用动态内存分配时必须考虑的检查点


●导致内存泄漏的场景


如果您预先知道什么地方可能出错,那么您就能够小心避免陷阱,并消除大多数与指针和内存相关的问题。


什么地方可能出错?


有几种问题场景可能会出现,从而可能在完成生成后导致问题。在处理指针时,您可以使用本文中的信息来避免许多问题。


未初始化的内存


在本例中,p已被分配了 10 个字节。这 10 个字节可能包含垃圾数据,如图 1所示。

char *p = malloc ( 10 );

图1.垃圾数据


5bc85a639cab50f1491a7c36876c4bda8a15ffa5


如果在对这个p赋值前,某个代码段尝试访问它,则可能会获得垃圾值,您的程序可能具有不可预测的行为。p可能具有您的程序从未曾预料到的值。


良好的实践是始终结合使用memset和malloc,或者使用calloc。

char *p = malloc (10);

memset(p,’’,10);

现在,即使同一个代码段尝试在对p赋值前访问它,该代码段也能正确处理Null值(在理想情况下应具有的值),然后将具有正确的行为。


内存覆盖


由于p已被分配了 10 个字节,如果某个代码片段尝试向p写入一个 11 字节的值,则该操作将在不告诉您的情况下自动从其他某个位置“吃掉”一个字节。让我们假设指针q表示该内存。


图2.原始 q 内容


0b96641b53cfaf0a04afde911bdeb80e61e2d39f


图3.覆盖后的 q 内容


55af4dbacbbddad8ffa38979087675f2d4acd14d


结果,指针q将具有从未预料到的内容。即使您的模块编码得足够好,也可能由于某个共存模块执行某些内存操作而具有不正确的行为。下面的示例代码片段也可以说明这种场景。

char *name = (char *) malloc(11);

// Assign some value to name

memcpy ( p,name,11); // Problem begins here

在本例中,memcpy操作尝试将 11 个字节写到p,而后者仅被分配了 10 个字节。


作为良好的实践,每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。一般情况下,memcpy函数将是用于此目的的检查点。


内存读取越界


内存读取越界 (overread) 是指所读取的字节数多于它们应有的字节数。这个问题并不太严重,在此就不再详述了。下面的代码提供了一个示例。

char *ptr = (char *)malloc(10);

char name[20] ;

memcpy ( name,ptr,20); // Problem begins here

在本例中,memcpy操作尝试从ptr读取 20 个字节,但是后者仅被分配了 10 个字节。这还会导致不希望的输出。


内存泄漏


内存泄漏可能真正令人讨厌。下面的列表描述了一些导致内存泄漏的场景。


●重新赋值我将使用一个示例来说明重新赋值问题。

char *memoryArea = malloc(10);

char *newArea = malloc(10);

这向如下面的图 4所示的内存位置赋值。


图4.内存位置


1ce3f8cfd1c76bb4b06c69bbb3f8557b3b4b4559


memoryArea和newArea分别被分配了 10 个字节,它们各自的内容如图 4所示。如果某人执行如下所示的语句(指针重新赋值)……

memoryArea = newArea;

则它肯定会在该模块开发的后续阶段给您带来麻烦。


在上面的代码语句中,开发人员将memoryArea指针赋值给newArea指针。结果,memoryArea以前所指向的内存位置变成了孤立的,如下面的图 5所示。它无法释放,因为没有指向该位置的引用。这会导致 10 个字节的内存泄漏。


图5.内存泄漏


1492a83ae5b70b259214d8a56f2abd1857a32819


●在对指针赋值前,请确保内存位置不会变为孤立的。


●首先释放父块假设有一个指针memoryArea,它指向一个 10 字节的内存位置。该内存位置的第三个字节又指向某个动态分配的 10 字节的内存位置,如图 6所示。


图6.动态分配的内存


41b8465249f87a51e7381ab18ed808f46d2af6c2

free(memoryArea)

如果通过调用 free 来释放了memoryArea,则newArea指针也会因此而变得无效。newArea以前所指向的内存位置无法释放,因为已经没有指向该位置的指针。换句话说,newArea所指向的内存位置变为了孤立的,从而导致了内存泄漏。


每当释放结构化的元素,而该元素又包含指向动态分配的内存位置的指针时,应首先遍历子内存位置(在此例中为newArea),并从那里开始释放,然后再遍历回父节点。


这里的正确实现应该为:

free( memoryArea->newArea);

free(memoryArea);

返回值的不正确处理


有时,某些函数会返回对动态分配的内存的引用。跟踪该内存位置并正确地处理它就成为了calling函数的职责。

char *func ( )

{

return malloc(20); // make sure to memset this location to ‘’…

}

void callingFunc ( )

{

func ( ); // Problem lies here

}

在上面的示例中,callingFunc()函数中对func()函数的调用未处理该内存位置的返回地址。结果,func()函数所分配的 20 个字节的块就丢失了,并导致了内存泄漏。


归还您所获得的


在开发组件时,可能存在大量的动态内存分配。您可能会忘了跟踪所有指针(指向这些内存位置),并且某些内存段没有释放,还保持分配给该程序。


始终要跟踪所有内存分配,并在任何适当的时候释放它们。事实上,可以开发某种机制来跟踪这些分配,比如在链表节点本身中保留一个计数器(但您还必须考虑该机制的额外开销)。


访问空指针


访问空指针是非常危险的,因为它可能使您的程序崩溃。始终要确保您不是在访问空指针。


总结


本文讨论了几种在使用动态内存分配时可以避免的陷阱。要避免内存相关的问题,良好的实践是:


●始终结合使用memset和 malloc,或始终使用calloc。


●每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。


●在对指针赋值前,要确保没有内存位置会变为孤立的。


●每当释放结构化的元素(而该元素又包含指向动态分配的内存位置的指针)时,都应首先遍历子内存位置并从那里开始释放,然后再遍历回父节点。


●始终正确处理返回动态分配的内存引用的函数返回值。


●每个malloc都要有一个对应的 free。


●确保您不是在访问空指针。




原文发布时间为:2018-05-31

本文作者:编程牛人

本文来自云栖社区合作伙伴“编程牛人”,了解相关信息可以关注“编程牛人”。

相关文章
|
13天前
|
程序员 C语言
C语言库函数 — 内存函数(含模拟实现内存函数)
C语言库函数 — 内存函数(含模拟实现内存函数)
24 0
|
24天前
|
编译器 C语言 C++
【C语言】memset()函数(内存块初始化函数)
【C语言】memset()函数(内存块初始化函数)
26 0
|
24天前
|
编译器 C语言 C++
【C语言】memcpy()函数(内存块拷贝函数)
【C语言】memcpy()函数(内存块拷贝函数)
39 0
|
15天前
|
存储 编译器 C语言
深入探索C语言动态内存分配:释放你的程序潜力
深入探索C语言动态内存分配:释放你的程序潜力
28 0
|
13天前
|
存储 C语言
C语言 — 指针进阶篇(下)
C语言 — 指针进阶篇(下)
20 0
|
13天前
|
存储 C语言 C++
C语言 — 指针进阶篇(上)
C语言 — 指针进阶篇(上)
26 0
|
19天前
|
存储 程序员 C语言
C语言指针的概念、语法和实现
在C语言中,指针是其最重要的概念之一。 本文将介绍C语言指针的概念、语法和实现,以及如何使用它们来编写高效的代码。
13 0
|
19天前
|
存储 C语言
【C语言】深入解开指针(三)2
【C语言】深入解开指针(三)
|
19天前
|
存储 程序员 C语言
【C语言】深入解开指针(二)2
【C语言】深入解开指针(二)
【C语言】深入解开指针(二)2
|
20天前
|
存储 C语言
【C语言】深入解开指针(一)1
【C语言】深入解开指针(一)