一位ML工程师构建深度神经网络的实用技巧

简介:

通用技巧

有些技巧对你来说可能就是明摆着的事,但在某些时候可能却并非如此,也可能存在不适用的情况,甚至对你的特定任务来说,可能不是一个好的技巧,所以使用时需要务必要谨慎!

使用 ADAM 优化器

确实很有效。与更传统的优化器相比,如 Vanilla 梯度下降法,我们更喜欢用ADAM优化器。用 TensorFlow 时要注意:如果保存和恢复模型权重,请记住在设置完AdamOptimizer 后设置 Saver,因为 ADAM 也有需要恢复的状态(即每个权重的学习率)。

ReLU 是最好的非线性(激活函数)

就好比 Sublime 是最好的文本编辑器一样。ReLU 快速、简单,而且,令人惊讶的是,它们工作时,不会发生梯度递减的情况。虽然 sigmoid 是常见的激活函数之一,但它并不能很好地在 DNN 进行传播梯度。

不要在输出层使用激活函数

这应该是显而易见的道理,但如果使用共享函数构建每个层,那就很容易犯这样的错误:所以请确保在输出层不要使用激活函数。

请在每一个层添加一个偏差

这是 ML 的入门知识了:偏差本质上就是将平面转换到最佳拟合位置。在 y=mx+b 中,b 是偏差,允许曲线上下移动到“最佳拟合”位置。

使用方差缩放(variance-scaled)初始化

在 Tensorflow 中,这看起来像tf.reemaner.variance_scaling_initializer()。根据我们的经验,这比常规的高斯函数、截尾正态分布(truncated normal)和 Xavier 能更好地泛化/缩放。

粗略地说,方差缩放初始化器根据每层的输入或输出数量(TensorFlow中的默认值是输入数量)调整初始随机权重的方差,从而有助于信号更深入地传播到网络中,而无须额外的裁剪或批量归一化(batch normalization)。Xavier 与此相似,只是各层的方差几乎相同;但是不同层形状变化很大的网络(在卷积网络中很常见)可能不能很好地处理每层中的相同方差。

归一化输入数据

对于训练,减去数据集的均值,然后除以它的标准差。在每个方向的权重越少,你的网络就越容易学习。保持输入数据以均值为中心且方差恒定有助于实现这一点。你还必须对每个测试输入执行相同的规范化,因此请确保你的训练集与真实数据相似。

以合理保留其动态范围的方式缩放输入数据。这与归一化有关,但应该在归一化之前就进行。例如,真实世界范围为 [0,140000000] 的数据 x 通常可以用 tanh(x) 或 tanh(x/C) 来控制,其中 C 是一些常数,它可以拉伸曲线,以适应 tanh 函数缓坡部分的动态范围内的更多输入范围。特别是在输入数据在一端或两端可能不受限制的情况下,神经网络将在(0,1)之间学习得更好。

一般不用学习率衰减

学习率衰减在 SGD 中更为常见,但 ADAM 很自然地处理了这个问题。如果你真的想把每一分表现都挤出去:在训练结束时短时间内降低学习率;你可能会看到突然的、非常小的误差下降,然后它会再次变平。

如果你的卷积层有 64 或 128 个过滤器,那就足够了。特别是一个对于深度网络而言。比如,128 个真的就已经很多了。如果你已经有了大量的过滤器,那么再添加更多的过滤器未必会进一步提高性能。

池化用于平移不变性

池化本质上就是让网络学习图像“那部分”的“总体思路”。例如,最大池化可以帮助卷积网络对图像中的特征的平移、旋转和缩放变得更加健壮。

调试神经网络

如果你的网络没能很好地进行学习(指在训练过程中损失/准确率没有收敛,或者没有得到预期的结果),那么可以试试以下的技巧:

过拟合

如果你的网络没有学习,那么首先要做的第一件事就是对训练点进行过拟合。准确率基本上应为 100% 或 99.99%,或误差接近 0。如果你的神经网络不能对单个数据点进行过拟合,那么体系架构就可能有严重的问题,但这可能是微妙的。如果你可以对一个数据点进行过拟合,但是对较大的集合进行训练仍然无法收敛,请尝试以下建议:

降低学习率

你的网络学习就会变得更慢一些,但是它可能会找到以前无法进入的最小化的方式,因为它的步长太大了。

提高学习率

这样做将会加快训练,有助于收紧反馈,这意味着无论你的网络是否正常工作,你都会很快地知道你的网络是否有效。虽然网络应该更快地收敛,但其结果可能不会很好,而且“收敛”实际上可能会跳来跳去。(对于 ADAM 优化器,我们发现在很多经历中,学习率大约为 0.001 时,表现很不错。)

减少批量处理规模

将批处理大小减小到 1,可以为你提供与权重更新相关的更细粒度的反馈,你应该使用TensorBoard(或其他一些调试/可视化工具)展示出来。

删除批归一化层

随着批处理大小减少到 1,这样做会暴露出梯度消失或梯度爆炸的问题。我们曾有过一个网络,在好几周都没有收敛,当我们删除了批归一化层之后,我们才意识到第二次迭代时输出都是 NaN。就像是创可贴上的吸水垫,它也有它可以发挥效果的地方,但前提是你知道网络没有 Bug。

增加批量处理的规模

一个更大的批处理规模,如果可以的话,整个训练集减少梯度更新中的方差,使每个迭代更准确。换句话说,权重更新将朝着正确的方向发展。但是!它的可用性和物理内存限制都有一个有效的上限。通常,我们发现这个建议不如上述两个建议有用,可以将批处理规模减少到1并删除批归一化层。

检查你的重构

大幅度的矩阵重构(如改变图像的X、Y 维度)会破坏空间局部性,使网络更难学习,因为它也必须学会重塑。(自然特征变得支离破碎。事实上,自然特征在空间上呈局部性,也是为什么卷积神经网络能如此有效的原因!)如果使用多个图像/通道进行重塑,请特别小心;使用 numpi.stack()进行适当的对齐操作。

仔细检查你的损失函数

如果使用一个复杂的函数,请尝试将其简化为 L1 或 L2。我们发现L1对异常值不那么敏感,在发出噪声的批或训练点时,不会做出太大的调整。

如果可以的话,仔细检查你的可视化。你的可视化库(matplotlib、OpenCV等)是调整值的比例呢,还是它们进行裁剪?可考虑使用一种视觉上均匀的配色方案。

实战分析

为了使上面所描述的过程更容易让读者理解,我们这儿有一些用于描述我们构建的卷积神经网络的真实回归实验的损失图(通过TesnorBoard)。

起初,这个网络根本没有学习:

c8fa26792f0500fd25b98b3bf5313f36ab0b8e6e

我们试图裁剪这些值,以防止它们超出界限:

5dc764303178282301e8d13fb33d4063c29e4802

嗯。看看不平滑的值有多疯狂啊!学习率是不是太高了?我们试着在一个输入数据上降低学习率并进行训练:

7c95144bbc81b4b8c1277ae55eb5a81ad3e84971

你可以看到学习率的前几个变化发生的位置(大约在 300 步和 3000 步)。显然,我们衰减得太快了。所以,给它更多的衰减时间,它表现得会更好:

680412e1e2f59b53fbd4abb09daf80f445778180

你可以看到我们在 2000 步和 5000 步的时候衰减了。这样更好一些了,但还不够好,因为它没有趋于 0。

然后我们禁用了 LR 衰减,并尝试将值移动到更窄的范围内,而不是通过 tanh 输入。虽然这显然使误差值小于 1,但我们仍然不能对训练集进行过拟合:

fee354e43cce2cb0970039bb4e913aaf0f7fee44

这里我们发现,通过删除批归一化层,网络在一到两次迭代之后迅速输出 NaN。我们禁用了批归一化,并将初始化更改为方差缩放。这些改变了一切!我们能够对只有一两个输入的测试集进行过拟合了。当底部的图标裁剪Y轴时,初始误差值远高于 5,表明误差减少了近 4 个数量级:

5fc57d2101aa2c811e77e8ecd98488a9927cb1bf

上面的图表是非常平滑的,但是你可以看到它非常快地拟合了测试输入,随着时间的推移,整个训练集的损失降低到了 0.01 以下。这没有降低学习速度。然后我们将学习速率降低一个数量级后继续训练,得到更好的结果:

8f180510910d0ffccf82dbd30cd530b991ab2dbf

这些结果好得多了!但是,如果我们以几何方式降低学习率,而不是将训练分成两部分,会发生什么样的结果呢?

通过在每一步将学习率乘以 0.9995,结果就不那么好了:

827f753b241cc36e74b4598a90bdc2085b8f2027

大概是因为学习率衰减太快了吧。乘数为 0.999995 会表现的更好,但结果几乎相当于完全没有衰减。我们从这个特定的实验序列中得出结论,批归一化隐藏了由槽糕的初始化引起的爆炸梯度,并且 ADAM 优化器对学习率的衰减并没有什么特别的帮助,与批归一化一样,裁剪值只是掩盖了真正的问题。我们还通过 tanh 来控制高方差输入值。

我们希望,本文提到的这些基本技巧能够在你构建深度神经网络时有所帮助。通常,正式因为简单的事情才改变了这一切。


原文发布时间为:2018-09-19

本文来自云栖社区合作伙伴“CDA数据分析师”,了解相关信息可以关注“DA数据分析师”。

相关文章
|
17天前
|
安全 网络安全 数据安全/隐私保护
网络堡垒的构建者:洞悉网络安全与信息安全的深层策略
【4月更文挑战第9天】在数字化时代,数据成为了新的价值核心。然而,随之而来的是日益复杂的网络安全威胁。从漏洞利用到信息泄露,从服务中断到身份盗用,攻击手段不断演变。本文深入剖析了网络安全的关键组成部分:识别和防范安全漏洞、加密技术的应用以及提升个体和企业的安全意识。通过探讨这些领域的最佳实践和最新动态,旨在为读者提供一套全面的策略工具箱,以强化他们在数字世界的防御能力。
|
1月前
|
存储 安全 网络安全
云计算与网络安全:构建数字化时代的坚固防线
在当今数字化时代,云计算和网络安全已经成为企业和个人信息安全的重要保障。本文探讨了云服务、网络安全以及信息安全等技术领域的相关议题,旨在帮助读者深入了解这些关键领域的发展和挑战,以构建更加坚固的数字化防线。
12 2
|
1月前
|
数据库 Android开发 开发者
构建高效Android应用:采用Kotlin协程优化网络请求处理
【2月更文挑战第30天】 在移动应用开发领域,网络请求的处理是影响用户体验的关键环节。针对Android平台,利用Kotlin协程能够极大提升异步任务处理的效率和简洁性。本文将探讨如何通过Kotlin协程优化Android应用中的网络请求处理流程,包括协程的基本概念、网络请求的异步执行以及错误处理等方面,旨在帮助开发者构建更加流畅和响应迅速的Android应用。
|
1月前
|
网络协议 网络虚拟化 数据中心
华为配置VXLAN构建虚拟网络实现相同网段互通示例(静态方式)
配置VXLAN构建虚拟网络实现相同网段互通示例(静态方式
|
1月前
|
存储 安全 网络安全
云计算与网络安全:构建数字化安全堡垒
在当今数字化时代,云计算技术的快速发展为企业提供了更便捷高效的信息化解决方案,然而,随之而来的网络安全隐患也备受关注。本文将探讨云计算与网络安全的紧密关系,分析云服务、网络安全、信息安全等技术领域的发展现状,以及如何通过有效的策略和技术手段构建数字化安全堡垒,确保信息安全与数据隐私。
13 1
|
1月前
|
SQL 安全 网络安全
网络堡垒的构建者:深入网络安全与信息安全的核心
在数字化时代,每一次点击、每一条信息的传递都可能成为安全威胁的载体。本文将探讨网络安全漏洞的本质,加密技术的进展以及提升个人和企业的安全意识的重要性。我们将深入分析如何通过技术手段和教育措施,构筑起防御网络攻击的坚固防线,确保信息传输的安全性和隐私保护。
|
1天前
|
云安全 安全 网络安全
云端防御战线:构建云计算环境下的网络安全体系
【4月更文挑战第25天】 随着企业数字化转型的加速,云计算以其灵活性、成本效益和可扩展性成为众多组织的首选技术平台。然而,云服务的广泛采用也带来了前所未有的安全挑战,特别是在数据保护、隐私合规以及网络攻击防护等方面。本文将深入探讨云计算环境中的网络安全策略,从云服务模型出发,分析不同服务层次的安全责任划分,并针对网络威胁提出综合性的防御措施。此外,文中还将讨论信息加密、身份验证、入侵检测等关键技术在维护云安全中的作用,以期为读者提供一套全面的云安全解决方案框架。
|
2天前
|
移动开发 Java Android开发
构建高效Android应用:采用Kotlin协程优化网络请求
【4月更文挑战第24天】 在移动开发领域,尤其是对于Android平台而言,网络请求是一个不可或缺的功能。然而,随着用户对应用响应速度和稳定性要求的不断提高,传统的异步处理方式如回调地狱和RxJava已逐渐显示出局限性。本文将探讨如何利用Kotlin协程来简化异步代码,提升网络请求的效率和可读性。我们将深入分析协程的原理,并通过一个实际案例展示如何在Android应用中集成和优化网络请求。
|
7天前
|
存储 安全 网络安全
构建坚固的防线:云计算环境下的网络安全策略
【4月更文挑战第19天】 随着企业纷纷迁移至云平台,云计算已成为现代信息技术架构的核心。然而,数据存储与处理的云端化也带来了前所未有的安全挑战。本文深入探讨了在复杂多变的云环境中,如何实施有效的网络安全措施,确保信息安全和业务连续性。通过分析云服务模型、网络威胁以及加密技术,提出了一系列切实可行的安全策略,旨在帮助组织构建一个既灵活又强大的防御体系。
16 1
|
7天前
|
监控 安全 算法
数字堡垒的构建者:网络安全与信息保护的现代策略
【4月更文挑战第19天】在信息化快速发展的今天,网络安全和信息安全已成为维护社会稳定、保障个人隐私和企业商业秘密的关键。本文将深入探讨网络安全漏洞的成因、加密技术的进展以及提升安全意识的重要性,旨在为读者提供一套综合性的网络防护策略,以应对日益猖獗的网络威胁。
7 1